Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The E2F5 repressor is an activator of E6/E7 transcription and of the S-phase entry in HPV18-associated cells

Abstract

High-risk papillomavirus type 18 (HPV18) is one of the less represented HPV types in low-grade lesions of the anogenital tract, whereas it occupies the second place in cervical cancer, where it can be found in 16% of the cases worldwide, after HPV16 present in 54% of them. These epidemiological data indicate that HPV18 infection is more prone to carcinogenic progression. The main oncogenic proteins, E6 and E7 of HPV18, are functionally comparable to the homologous proteins of the other high-risk viruses, including HPV16. In this work, we investigated the possibility that the higher oncogenic potential of HPV18 might be due to transcriptional regulation of the E6/E7 oncogenes. By comparing the E6/E7 promoter and enhancer sequences of the mucosal HPV genomes, we identified E2F binding sites specific for HPV18. The E2F family of transcription factors contains activators (E2F1–3) and repressors (E2F4–8) that regulate the transcription of S-phase and mitotic genes and thereby have a crucial role in cell-cycle progression. Surprisingly, we identified E2F5 as a direct activator of HPV18 E6/E7 transcription by sequential silencing of E2F members in HeLa cells. In addition, we could show that E2F5 positively regulates S-phase entry in HeLa cells and that this activation of the cell cycle by a member of the E2F repressor family is specific for HPV18-expressing cells. Diverting the function of E2F5 from a cell-cycle repressor into an activator might contribute to the higher oncogenic potential of HPV18 when compared with other high-risk HPV types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Apostolova MD, Ivanova IA, Dagnino C, D'Souza SJ, Dagnino L . (2002). Active nuclear import and export pathways regulate E2F-5 subcellular localization. J Biol Chem 277: 34471–34479.

    Article  CAS  PubMed  Google Scholar 

  • Bernard BA, Bailly C, Lenoir MC, Darmon M, Thierry F, Yaniv M . (1989). The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J Virol 63: 4317–4324.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouallaga I, Massicard S, Yaniv M, Thierry F . (2000). An enhanceosome containing the JunB/Fra2 heterodimer and the HMGI(Y) architectural protein controls HPV18 transcription. EMBO Rep 1: 422–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouallaga I, Teissier S, Yaniv M, Thierry F . (2003). HMGI(Y) and the CBP/P300 coactivator are essential for the HPV18 enhanceosome transcriptional activity. Mol Cell Biol 23: 2329–2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caracciolo V, Reiss K, Crozier-Fitzgerald C, De Pascali F, Macaluso M, Khalili K et al. (2007). Interplay between the retinoblastoma related pRb2/p130 and E2F-4 and -5 in relation to JCV-TAg. J Cell Physiol 212: 96–104.

    Article  CAS  PubMed  Google Scholar 

  • Castellsague X, De Sanjose S, Aguado T, Louie KS, Bruni L, Munoz J et al. (2007). HPV and cervical cancer in the World, 2007 report. Vaccine 25.

  • Dyson N, Howley PM, Münger K, Harlow E . (1989). The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937.

    Article  CAS  PubMed  Google Scholar 

  • Elkon R, Linhart C, Sharan R, Shamir R, Shiloh Y . (2003). Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res 13: 773–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinstein E, Wernet P, Snijders PJ, Rosl F, Weinert I, Jia W et al. (2002). Nucleolin as activator of human papillomavirus type 18 oncogene transcription in cervical cancer. J Exp Med 196: 1067–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heino P, Zhou J, Lambert P . (2000). Interaction of the papillomavirus transcription/replication factor E2 and the viral capsid protein L2. Virology 276: 304–314.

    Article  CAS  PubMed  Google Scholar 

  • Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M et al. (2001). Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 21: 4684–4699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DG, Schwarz JK, Cress WD, Nevins JR . (1993). Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365: 349–352.

    Article  CAS  PubMed  Google Scholar 

  • Kong LJ, Chang JT, Bild AH, Nevins JR . (2007). Compensation and specificity of function within the E2F family. Oncogene 26: 321–327.

    Article  CAS  PubMed  Google Scholar 

  • Kuner R, Vogt M, Sultmann H, Buness A, Dymalla S, Bulkescher J et al. (2007). Identification of cellular targets for the human papillomavirus E6 and E7 oncogenes by RNA interference and transcriptome analyses. J Mol Med 85: 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  • Linhart C, Elkon R, Shiloh Y, Shamir R . (2005). Deciphering transcriptional regulatory elements that encode specific cell cycle phasing by comparative genomics analysis. Cell Cycle 4: 1788–1797.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin-Drubin ME, Huh KW, Munger K . (2008). Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol 82: 8695–8705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudryj M, Devoto SH, Hiebert SW, Hunter T, Pines J, Nevins JR . (1991). Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 65: 1243–1253.

    Article  CAS  PubMed  Google Scholar 

  • Polager S, Ginsberg D . (2003). E2F mediates sustained G2 arrest and down-regulation of Stathmin and AIM-1 expression in response to genotoxic stress. J Biol Chem 278: 1443–1449.

    Article  CAS  PubMed  Google Scholar 

  • Reed SA, Ouellette SE, Liu X, Allen RE, Johnson SE . (2007). E2F5 and LEK1 translocation to the nucleus is an early event demarcating myoblast quiescence. J Cell Biochem 101: 1394–1408.

    Article  CAS  PubMed  Google Scholar 

  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA et al. (2002). E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16: 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardet C, Vidal M, Cobrinik D, Geng Y, Onufryk C, Chen A et al. (1995). E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci USA 92: 2403–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . (1993). The HPV16 E6 and E6-AP complex functions as ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495–505.

    Article  CAS  PubMed  Google Scholar 

  • Teissier S, Ben Khalifa Y, Mori M, Pautier P, Desaintes C, Thierry F . (2007). A new E6/P63 pathway, together with a strong E7/E2F mitotic pathway, modulates the transcriptome in cervical cancer cells. J Virol 81: 9368–9376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thierry F . (2009). Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 384: 375–379.

    Article  CAS  PubMed  Google Scholar 

  • Thierry F, Benotmane MA, Demeret C, Mori M, Teissier S, Desaintes C . (2004). A genomic approach reveals a novel mitotic pathway in papillomavirus carcinogenesis. Cancer Res 64: 895–903.

    Article  CAS  PubMed  Google Scholar 

  • Thierry F, Howley PM . (1991). Functional analysis of E2-mediated repression of the HPV18 P105 promoter. New Biol 3: 90–100.

    CAS  PubMed  Google Scholar 

  • Thierry F, Yaniv M . (1987). The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J 6: 3391–3397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa LL, Schlegel R . (1991). Differences in transformation activity between HPV-18 and HPV-16 map to the viral LCR-E6-E7 region. Virology 181: 374–377.

    Article  CAS  PubMed  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chen W, Roman A . (2006). The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc Natl Acad Sci USA 103: 437–442.

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Giangrande PH, Nevins JR . (2004). E2Fs link the control of G1/S and G2/M transcription. EMBO J 23: 4615–4626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Felix Hoppe-Seyler and Professor Hanswalter Zentgraf, who provided us with the HPV18 E7 antibody. We thank Dr Sardet for providing us the E2F5-expressing vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Thierry.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teissier, S., Pang, C. & Thierry, F. The E2F5 repressor is an activator of E6/E7 transcription and of the S-phase entry in HPV18-associated cells. Oncogene 29, 5061–5070 (2010). https://doi.org/10.1038/onc.2010.246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.246

Keywords

This article is cited by

Search

Quick links