Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor

Subjects

Abstract

Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/β-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: E6/E7 activation of tumor-related signaling pathway.

Similar content being viewed by others

References

  1. Wang JW, Roden RB. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines. 2013;12:129–41.

    Article  PubMed  CAS  Google Scholar 

  2. Gupta S, Kumar P, Das BC. HPV: Molecular pathways and targets. Curr Probl Cancer. 2018;42:161–74.

    Article  PubMed  Google Scholar 

  3. Bannach C, Brinkert P, Kuhling L, Greune L, Schmidt MA, Schelhaas M. Epidermal growth factor receptor and Abl2 kinase regulate distinct steps of human papillomavirus 16 endocytosis. J Virol. 2020;94:e02143–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Serrano B, Brotons M, Bosch FX, Bruni L. Epidemiology and burden of HPV-related disease. Best Pr Res Clin Obstet Gynaecol. 2018;47:14–26.

    Article  Google Scholar 

  5. Szymonowicz KA, Chen J. Biological and clinical aspects of HPV-related cancers. Cancer Biol Med. 2020;17:864–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dziduszko A, Ozbun MA. Annexin A2 and S100A10 regulate human papillomavirus type 16 entry and intracellular trafficking in human keratinocytes. J Virol. 2013;87:7502–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Williamson AL. Recent developments in Human Papillomavirus (HPV) vaccinology. Viruses. 2023;15:1440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: Key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018;26:158–68.

    Article  PubMed  CAS  Google Scholar 

  9. Habbous S, Pang V, Eng L, Xu W, Kurtz G, Liu FF, et al. p53 Arg72Pro polymorphism, HPV status and initiation, progression, and development of cervical cancer: a systematic review and meta-analysis. Clin Cancer Res. 2012;18:6407–15.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang X, Zhang A, Zhang X, Hu S, Bao Z, Zhang Y, et al. ERa-36 instead of ERa mediates the stimulatory effects of estrogen on the expression of viral oncogenes HPV E6/E7 and the malignant phenotypes in cervical cancer cells. Virus Res. 2021;306:198602.

    Article  PubMed  CAS  Google Scholar 

  11. Olmedo-Nieva L, Munoz-Bello JO, Martinez-Ramirez I, Martinez-Gutierrez AD, Ortiz-Pedraza Y, Gonzalez-Espinosa C, et al. RIPOR2 expression decreased by HPV-16 E6 and E7 oncoproteins: An opportunity in the search for prognostic biomarkers in cervical cancer. Cells. 2022;11:3942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hall AH, Alexander KA. RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol. 2003;77:6066–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. DeFilippis RA, Goodwin EC, Wu L, DiMaio D. Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol. 2003;77:1551–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene. 2003;22:5938–45.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu D, Ye M, Zhang W. E6/E7 oncoproteins of high risk HPV-16 upregulate MT1-MMP, MMP-2 and MMP-9 and promote the migration of cervical cancer cells. Int J Clin Exp Pathol. 2015;8:4981–9.

    PubMed  PubMed Central  Google Scholar 

  16. Ahmad A, Ansari IA. A comprehensive review on cross-talk of human papilloma virus oncoproteins and developmental/self-renewal pathways during the pathogenesis of uterine cervical cancer. Curr Mol Med. 2021;21:402–16.

    Article  PubMed  CAS  Google Scholar 

  17. Zeng J, He SL, Li LJ, Wang C. Hsp90 up-regulates PD-L1 to promote HPV-positive cervical cancer via HER2/PI3K/AKT pathway. Mol Med. 2021;27:130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. DA Costa RM, Bastos MM, Medeiros R, Oliveira PA. The NFkappaB signaling pathway in papillomavirus-induced lesions: friend or foe? Anticancer Res. 2016;36:2073–83.

    PubMed  Google Scholar 

  19. He C, Mao D, Hua G, Lv X, Chen X, Angeletti PC, et al. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression. EMBO Mol Med. 2015;7:1426–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–73.

    Article  PubMed  CAS  Google Scholar 

  21. Nusse R, Clevers H. Wnt/beta-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  PubMed  CAS  Google Scholar 

  22. Albrecht LV, Tejeda-Munoz N, De Robertis EM. Cell biology of canonical Wnt signaling. Annu Rev Cell Dev Biol. 2021;37:369–89.

    Article  PubMed  CAS  Google Scholar 

  23. Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145:dev146589.

    Article  PubMed  Google Scholar 

  24. Peng Q, Chen L, Wu W, Wang J, Zheng X, Chen Z, et al. EPH receptor A2 governs a feedback loop that activates Wnt/beta-catenin signaling in gastric cancer. Cell Death Dis. 2018;9:1146.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aghbash PS, Hemmat N, Baradaran B, Mokhtarzadeh A, Poortahmasebi V, Oskuee MA, et al. The effect of Wnt/beta-catenin signaling on PD-1/PDL-1 axis in HPV-related cervical cancer. Oncol Res. 2022;30:99–116.

    Article  PubMed  Google Scholar 

  26. Maier T, Stoiber S, Gurnhofer E, Haas M, Kenner L, Heiduschka G, et al. Inhibition of beta-catenin shows therapeutic potential in head and neck squamous cell carcinoma in vitro. Eur Arch Otorhinolaryngol. 2023;280:399–408.

    Article  PubMed  Google Scholar 

  27. Zhang R, Lu H, Lyu YY, Yang XM, Zhu LY, Yang GD, et al. E6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway. Sci Rep. 2017;7:44744.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rampias T, Boutati E, Pectasides E, Sasaki C, Kountourakis P, Weinberger P, et al. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells. Mol Cancer Res. 2010;8:433–43.

    Article  PubMed  CAS  Google Scholar 

  29. Munoz-Bello JO, Olmedo-Nieva L, Castro-Munoz LJ, Manzo-Merino J, Contreras-Paredes A, Gonzalez-Espinosa C, et al. HPV-18 E6 Oncoprotein and its spliced isoform E6*I regulate the Wnt/beta-catenin cell signaling pathway through the TCF-4 transcriptional factor. Int J Mol Sci. 2018;19:3153.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhao L, Wang L, Zhang C, Liu Z, Piao Y, Yan J, et al. E6-induced selective translation of WNT4 and JIP2 promotes the progression of cervical cancer via a noncanonical WNT signaling pathway. Signal Transduct Target Ther. 2019;4:32.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang Q, Jiang W, Hou P. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin Cancer Biol. 2019;59:112–24.

    Article  PubMed  CAS  Google Scholar 

  32. Ao R, Guan L, Wang Y, Wang JN. Silencing of COL1A2, COL6A3, and THBS2 inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3k-Akt signaling pathway. J Cell Biochem. 2018;119:4420–34.

    Article  PubMed  CAS  Google Scholar 

  33. Wang HM, Lu YJ, He L, Gu NJ, Wang SY, Qiu XS, et al. HPV16 E6/E7 promote the translocation and glucose uptake of GLUT1 by PI3K/AKT pathway via relieving miR-451 inhibitory effect on CAB39 in lung cancer cells. Ther Adv Chronic Dis. 2020;11:2040622320957143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Liu J, Huang B, Xiu Z, Zhou Z, Liu J, Li X, et al. PI3K/Akt/HIF-1alpha signaling pathway mediates HPV-16 oncoprotein-induced expression of EMT-related transcription factors in non-small cell lung cancer cells. J Cancer. 2018;9:3456–66.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Strickland SW, Vande Pol S. The human papillomavirus 16 E7 oncoprotein attenuates AKT signaling to promote internal ribosome entry site-dependent translation and expression of c-MYC. J Virol. 2016;90:5611–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Liu C, Tang DG. MicroRNA regulation of cancer stem cells. Cancer Res. 2011;71:5950–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Clarke MF. Clinical and therapeutic implications of cancer stem cells. N. Engl J Med. 2019;380:2237–45.

    Article  PubMed  CAS  Google Scholar 

  38. Xi R, Pan S, Chen X, Hui B, Zhang L, Fu S, et al. HPV16 E6-E7 induces cancer stem-like cells phenotypes in esophageal squamous cell carcinoma through the activation of PI3K/Akt signaling pathway in vitro and in vivo. Oncotarget. 2016;7:57050–65.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brand TM, Hartmann S, Bhola NE, Li H, Zeng Y, O’Keefe RA, et al. Correction: Cross-talk signaling between HER3 and HPV16 E6 and E7 mediates resistance to PI3K inhibitors in head and neck cancer. Cancer Res. 2022;82:3187.

    Article  PubMed  Google Scholar 

  40. Hayden MS, West AP, Ghosh S. SnapShot: NF-kappaB signaling pathways. Cell. 2006;127:1286–7.

    Article  PubMed  Google Scholar 

  41. Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Beinke S, Ley SC. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J. 2004;382:393–409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tegowski M, Baldwin A. Noncanonical NF-kappaB in Cancer. Biomedicines. 2018;6:66.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    Article  PubMed  CAS  Google Scholar 

  45. Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl). 2004;82:434–48.

    Article  PubMed  CAS  Google Scholar 

  46. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–6.

    Article  PubMed  CAS  Google Scholar 

  47. Vandermark ER, Deluca KA, Gardner CR, Marker DF, Schreiner CN, Strickland DA, et al. Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization. Virology. 2012;425:53–60.

    Article  PubMed  CAS  Google Scholar 

  48. Textor S, Accardi R, Havlova T, Hussain I, Sylla BS, Gissmann L, et al. NF-kappa B-dependent upregulation of ICAM-1 by HPV16-E6/E7 facilitates NK cell/target cell interaction. Int J Cancer. 2011;128:1104–13.

    Article  PubMed  CAS  Google Scholar 

  49. Gu NJ, Wu MZ, He L, Wang XB, Wang S, Qiu XS, et al. HPV 16 E6/E7 up-regulate the expression of both HIF-1alpha and GLUT1 by inhibition of RRAD and activation of NF-kappaB in lung cancer cells. J Cancer. 2019;10:6903–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Spitkovsky D, Hehner SP, Hofmann TG, Moller A, Schmitz ML. The human papillomavirus oncoprotein E7 attenuates NF-kappa B activation by targeting the Ikappa B kinase complex. J Biol Chem. 2002;277:25576–82.

    Article  PubMed  CAS  Google Scholar 

  51. Morgan EL, Macdonald A. Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1-NFkappaB-IL-6 signalling axis. PLoS Pathog. 2019;15:e1007835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 2020;19:480–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Moroishi T, Hayashi T, Pan WW, Fujita Y, Holt MV, Qin J, et al. The hippo pathway kinases LATS1/2 suppress cancer immunity. Cell. 2016;167:1525–39.e17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Matarrese P, Vona R, Ascione B, Paggi MG, Mileo AM. Physical interaction between HPV16E7 and the actin-binding protein gelsolin regulates epithelial-mesenchymal transition via HIPPO-YAP axis. Cancers. 2021;13:353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nishio M, To Y, Maehama T, Aono Y, Otani J, Hikasa H, et al. Endogenous YAP1 activation drives immediate onset of cervical carcinoma in situ in mice. Cancer Sci. 2020;111:3576–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Messa L, Celegato M, Bertagnin C, Mercorelli B, Alvisi G, Banks L, et al. The dimeric form of HPV16 E6 is crucial to drive YAP/TAZ upregulation through the targeting of hScrib. Cancers. 2021;13:4083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Morgan EL, Patterson MR, Ryder EL, Lee SY, Wasson CW, Harper KL, et al. MicroRNA-18a targeting of the STK4/MST1 tumour suppressor is necessary for transformation in HPV positive cervical cancer. PLoS Pathog. 2020;16:e1008624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Stark GR, Darnell JE Jr. The JAK-STAT pathway at twenty. Immunity. 2012;36:503–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth Factors. 2012;30:88–106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gaykalova DA, Manola JB, Ozawa H, Zizkova V, Morton K, Bishop JA, et al. NF-kappaB and stat3 transcription factor signatures differentiate HPV-positive and HPV-negative head and neck squamous cell carcinoma. Int J Cancer. 2015;137:1879–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hong S, Mehta KP, Laimins LA. Suppression of STAT-1 expression by human papillomaviruses is necessary for differentiation-dependent genome amplification and plasmid maintenance. J Virol. 2011;85:9486–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Morgan EL, Macdonald A. JAK2 inhibition impairs proliferation and sensitises cervical cancer cells to cisplatin-induced cell death. Cancers. 2019;11:1934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Shukla S, Mahata S, Shishodia G, Pandey A, Tyagi A, Vishnoi K, et al. Functional regulatory role of STAT3 in HPV16-mediated cervical carcinogenesis. PLoS One. 2013;8:e67849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Shukla S, Shishodia G, Mahata S, Hedau S, Pandey A, Bhambhani S, et al. Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection. Mol Cancer. 2010;9:282.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19:1997–2007.

    PubMed  PubMed Central  Google Scholar 

  69. Mlakar V, Morel E, Mlakar SJ, Ansari M, Gumy-Pause F. A review of the biological and clinical implications of RAS-MAPK pathway alterations in neuroblastoma. J Exp Clin Cancer Res. 2021;40:189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Fu L, Chen S, He G, Chen Y, Liu B. Targeting extracellular signal-regulated protein kinase 1/2 (ERK1/2) in cancer: an update on pharmacological small-molecule inhibitors. J Med Chem. 2022;65:13561–73.

    Article  PubMed  CAS  Google Scholar 

  71. Bi C, Zhang X, Chen Y, Dong Y, Shi Y, Lei Y, et al. MAGT1 is required for HeLa cell proliferation through regulating p21 expression, S-phase progress, and ERK/p38 MAPK MYC axis. Cell Cycle. 2021;20:2233–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Luna AJ, Young JM, Sterk RT, Bondu V, Schultz FA, Kusewitt DF, et al. Inhibition of cellular MEK/ERK signaling suppresses murine papillomavirus type 1 replicative activities and promotes tumor regression. bioRxiv. 2023. https://doi.org/10.1101/2023.03.14.532042.

  73. Luna AJ, Sterk RT, Griego-Fisher AM, Chung JY, Berggren KL, Bondu V, et al. MEK/ERK signaling is a critical regulator of high-risk human papillomavirus oncogene expression revealing therapeutic targets for HPV-induced tumors. PLoS Pathog. 2021;17:e1009216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chakrabarti O, Veeraraghavalu K, Tergaonkar V, Liu Y, Androphy EJ, Stanley MA, et al. Human papillomavirus type 16 E6 amino acid 83 variants enhance E6-mediated MAPK signaling and differentially regulate tumorigenesis by notch signaling and oncogenic Ras. J Virol. 2004;78:5934–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Liu F, Lin B, Liu X, Zhang W, Zhang E, Hu L, et al. ERK signaling pathway is involved in HPV-16 E6 but not E7 oncoprotein-induced HIF-1alpha protein accumulation in NSCLC cells. Oncol Res. 2016;23:109–18.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lai SY, Guan HM, Liu J, Huang LJ, Hu XL, Chen YH, et al. Long noncoding RNA SNHG12 modulated by human papillomavirus 16 E6/E7 promotes cervical cancer progression via ERK/Slug pathway. J Cell Physiol. 2020;235:7911–22.

    Article  PubMed  CAS  Google Scholar 

  77. Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. 2022;7:95.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting notch in oncology: the path forward. Nat Rev Drug Discov. 2021;20:125–44.

    Article  PubMed  CAS  Google Scholar 

  79. Xiu MX, Liu YM, Kuang BH. The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother. 2020;129:110416.

    Article  PubMed  CAS  Google Scholar 

  80. D’Assoro AB, Leon-Ferre R, Braune EB, Lendahl U. Roles of notch signaling in the tumor microenvironment. Int J Mol Sci. 2022;23:6241.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Reichrath J, Reichrath S. Notch signaling in prevention and therapy: fighting cancer with a two-sided sword. Adv Exp Med Biol. 2021;1287:1–7.

    Article  PubMed  CAS  Google Scholar 

  82. Kowald A, Passos JF, Kirkwood TBL. On the evolution of cellular senescence. Aging Cell. 2020;19:e13270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: aging, cancer, and injury. Physiol Rev. 2019;99:1047–78.

    Article  PubMed  CAS  Google Scholar 

  84. Kagawa S, Natsuizaka M, Whelan KA, Facompre N, Naganuma S, Ohashi S, et al. Cellular senescence checkpoint function determines differential notch1-dependent oncogenic and tumor-suppressor activities. Oncogene. 2015;34:2347–59.

    Article  PubMed  CAS  Google Scholar 

  85. Talora C, Cialfi S, Segatto O, Morrone S, Kim Choi J, Frati L, et al. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways. Exp Cell Res. 2005;305:343–54.

    Article  PubMed  CAS  Google Scholar 

  86. Nair P, Somasundaram K, Krishna S. Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J Virol. 2003;77:7106–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wang Y, Wang M, Wu HX, Xu RH. Advancing to the era of cancer immunotherapy. Cancer Commun (Lond). 2021;41:803–29.

    Article  PubMed  Google Scholar 

  88. Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, et al. Advances in cancer immunotherapy 2019 - latest trends. J Exp Clin Cancer Res. 2019;38:268.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fernandes FP, Cambui RAG, Soares J, Reis ECD, Leal VNC, Pontillo A. Cervical carcinoma induces NLRP3 inflammasome activation and IL-1ss release in human peripheral blood monocytes affecting patients’ overall survival. Clin Transl Oncol. 2023;25:3277–86.

    Article  PubMed  CAS  Google Scholar 

  90. Ling J, Sun Q, Tian Q, Shi H, Yang H, Ren J. Human papillomavirus 16 E6/E7 contributes to immune escape and progression of cervical cancer by regulating miR-142-5p/PD-L1 axis. Arch Biochem Biophys. 2022;731:109449.

    Article  PubMed  CAS  Google Scholar 

  91. James CD, Fontan CT, Otoa R, Das D, Prabhakar AT, Wang X, et al. Human papillomavirus 16 E6 and E7 synergistically repress innate immune gene transcription. mSphere. 2020;5:e00828–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. McCall KD, Muccioli M, Benencia F. Toll-Like receptors signaling in the tumor microenvironment. Adv Exp Med Biol. 2020;1223:81–97.

    Article  PubMed  CAS  Google Scholar 

  93. Oliveira LB, Haga IR, Villa LL. Human Papillomavirus (HPV) 16 E6 oncoprotein targets the Toll-like receptor pathway. J Gen Virol. 2018;99:667–75.

    Article  PubMed  CAS  Google Scholar 

  94. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6:291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chiang C, Pauli EK, Biryukov J, Feister KF, Meng M, White EA, et al. The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 to suppress RIG-I-mediated innate immune signaling. J Virol. 2018;92:e01737–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Castagnino P, Kim HW, Lam LKM, Basu D, White EA. Systematic analysis of IL-1 cytokine signaling suppression by HPV16 oncoproteins. J Virol. 2022;96:e0132622.

    Article  PubMed  Google Scholar 

  97. Levan J, Vliet-Gregg PA, Robinson KL, Katzenellenbogen RA. Human papillomavirus type 16 E6 and NFX1-123 mislocalize immune signaling proteins and downregulate immune gene expression in keratinocytes. PLoS One. 2017;12:e0187514.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yang F, Xiao Y, Ding JH, Jin X, Ma D, Li DQ, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab. 2023;35:84–100.e8.

    Article  PubMed  CAS  Google Scholar 

  99. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  PubMed  CAS  Google Scholar 

  100. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, et al. The cancer metabolic reprogramming and immune response. Mol Cancer. 2021;20:28.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Peng Q, Zhou Y, Oyang L, Wu N, Tang Y, Su M, et al. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. Mol Ther. 2022;30:1018–35.

    Article  PubMed  CAS  Google Scholar 

  103. Hu C, Liu T, Han C, Xuan Y, Jiang D, Sun Y, et al. HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m(6)A-MYC expression. Int J Biol Sci. 2022;18:507–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Chen Z, He Q, Lu T, Wu J, Shi G, He L, et al. mcPGK1-dependent mitochondrial import of PGK1 promotes metabolic reprogramming and self-renewal of liver TICs. Nat Commun. 2023;14:1121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Liu S, Song L, Yao H, Zhang L. HPV16 E6/E7 stabilize PGK1 protein by reducing its poly-ubiquitination in cervical cancer. Cell Biol Int. 2022;46:370–80.

    Article  PubMed  Google Scholar 

  106. Yao J, Tang S, Shi C, Lin Y, Ge L, Chen Q, et al. Isoginkgetin, a potential CDK6 inhibitor, suppresses SLC2A1/GLUT1 enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy. 2023;19:1221–38.

    Article  PubMed  CAS  Google Scholar 

  107. Pragallapati S, Manyam R. Glucose transporter 1 in health and disease. J Oral Maxillofac Pathol. 2019;23:443–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gao ZY, Gu NJ, Wu MZ, Wang SY, Xu HT, Li QC, et al. Human papillomavirus16 E6 but not E7 upregulates GLUT1 expression in lung cancer cells by upregulating thioredoxin expression. Technol Cancer Res Treat. 2021;20:15330338211067111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.

    Article  PubMed  CAS  Google Scholar 

  110. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, et al. Autophagy in major human diseases. EMBO J. 2021;40:e108863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 2022;7:196.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kuma A, Komatsu M, Mizushima N. Autophagy-monitoring and autophagy-deficient mice. Autophagy. 2017;13:1619–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kim KH, Lee MS. Autophagy-a key player in cellular and body metabolism. Nat Rev Endocrinol. 2014;10:322–37.

    Article  PubMed  CAS  Google Scholar 

  114. Zeng Q, Zhao RX, Chen J, Li Y, Li XD, Liu XL, et al. O-linked GlcNAcylation elevated by HPV E6 mediates viral oncogenesis. Proc Natl Acad Sci USA. 2016;113:9333–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Shi Y, Yan S, Shao GC, Wang J, Jian YP, Liu B, et al. O-GlcNAcylation stabilizes the autophagy-initiating kinase ULK1 by inhibiting chaperone-mediated autophagy upon HPV infection. J Biol Chem. 2022;298:102341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Tingting C, Shizhou Y, Songfa Z, Junfen X, Weiguo L, Xiaodong C, et al. Human papillomavirus 16E6/E7 activates autophagy via Atg9B and LAMP1 in cervical cancer cells. Cancer Med. 2019;8:4404–16.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mattoscio D, Casadio C, Miccolo C, Maffini F, Raimondi A, Tacchetti C, et al. Autophagy regulates UBC9 levels during viral-mediated tumorigenesis. PLoS Pathog. 2017;13:e1006262.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zheng Y, Li X, Jiao Y, Wu C. High-risk human papillomavirus oncogenic E6/E7 mRNAs splicing regulation. Front Cell Infect Microbiol. 2022;12:929666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Olmedo-Nieva L, Munoz-Bello JO, Contreras-Paredes A, Lizano M. The role of E6 spliced isoforms (E6*) in human papillomavirus-induced carcinogenesis. Viruses. 2018;10:45.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pim D, Tomaic V, Banks L. The human papillomavirus (HPV) E6* proteins from high-risk, mucosal HPVs can direct degradation of cellular proteins in the absence of full-length E6 protein. J Virol. 2009;83:9863–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Chen J, Xue Y, Poidinger M, Lim T, Chew SH, Pang CL, et al. Mapping of HPV transcripts in four human cervical lesions using RNAseq suggests quantitative rearrangements during carcinogenic progression. Virology. 2014;462-463:14–24.

    Article  PubMed  CAS  Google Scholar 

  122. Zheng ZM, Tao M, Yamanegi K, Bodaghi S, Xiao W. Splicing of a cap-proximal human Papillomavirus 16 E6E7 intron promotes E7 expression, but can be restrained by distance of the intron from its RNA 5’ cap. J Mol Biol. 2004;337:1091–108.

    Article  PubMed  CAS  Google Scholar 

  123. Zheng Y, Jonsson J, Hao C, Shoja Chaghervand S, Cui X, Kajitani N, et al. Heterogeneous Nuclear Ribonucleoprotein A1 (hnRNP A1) and hnRNP A2 inhibit splicing to human papillomavirus 16 Splice Site SA409 through a UAG-containing sequence in the E7 coding region. J Virol. 2020;94:e01509–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Umnajvijit W, Sangthong J, Loison F, Vaeteewoottacharn K, Ponglikitmongkol M. An internal class III PDZ binding motif in HPV16 E6* protein is required for Dlg degradation activity. Biochim Biophys Acta Gen Subj. 2021;1865:129850.

    Article  PubMed  CAS  Google Scholar 

  125. Storrs CH, Silverstein SJ. PATJ, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18 E6. J Virol. 2007;81:4080–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kranjec C, Massimi P, Banks L. Restoration of MAGI-1 expression in human papillomavirus-positive tumor cells induces cell growth arrest and apoptosis. J Virol. 2014;88:7155–69.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Paget-Bailly P, Meznad K, Bruyere D, Perrard J, Herfs M, Jung AC, et al. Comparative RNA sequencing reveals that HPV16 E6 abrogates the effect of E6*I on ROS metabolism. Sci Rep. 2019;9:5938.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Tungteakkhun SS, Filippova M, Fodor N, Duerksen-Hughes PJ. The full-length isoform of human papillomavirus 16 E6 and its splice variant E6* bind to different sites on the procaspase 8 death effector domain. J Virol. 2010;84:1453–63.

    Article  PubMed  CAS  Google Scholar 

  129. Manzo-Merino J, Massimi P, Lizano M, Banks L. The Human Papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8. Virology. 2014;450-451:146–52.

    Article  PubMed  CAS  Google Scholar 

  130. Wanichwatanadecha P, Sirisrimangkorn S, Kaewprag J, Ponglikitmongkol M. Transactivation activity of human papillomavirus type 16 E6*I on aldo-keto reductase genes enhances chemoresistance in cervical cancer cells. J Gen Virol. 2012;93:1081–92.

    Article  PubMed  CAS  Google Scholar 

  131. Spurgeon ME. Small DNA tumor viruses and human cancer: preclinical models of virus infection and disease. Tumour Virus Res. 2022;14:200239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Wei E, Reisinger A, Li J, French LE, Clanner-Engelshofen B, Reinholz M. Integration of scRNA-Seq and TCGA RNA-Seq to analyze the heterogeneity of HPV+ and HPV- cervical cancer immune cells and establish molecular risk models. Front Oncol. 2022;12:860900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018;14:479–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported in part by grants from the following sources: the National Natural Science Foundation of China (82203233, 82202966, 81972636), the Natural Science Foundation of Hunan Province (2023JJ40413, 2023JJ40853, 2022JJ80078, 2021JJ70098, 2020JJ5336), the Research Project of Health Commission of Hunan Province (202302067467, 202203034978, 202109031837), Key Research and Development Program of Hunan Province (2022SK2051), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kq2208337, kh2201054), Ascend Foundation of National cancer center (NCC201909B06), and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002), the science and technology innovation Program of Hunan Province (2023RC1073, 2023RC3199).

Author information

Authors and Affiliations

Authors

Contributions

QP, LW, LZ, SG, YH, JL, MP, NW, and YT collected the related paper and drafted the manuscript. HT, YZ, and QL revised and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qiu Peng, Hao Tian, Yujuan Zhou or Qianjin Liao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Wang, L., Zuo, L. et al. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor. Cancer Gene Ther 31, 9–17 (2024). https://doi.org/10.1038/s41417-023-00682-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00682-3

This article is cited by

Search

Quick links