Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of GLI, but not Smoothened, induces apoptosis in chronic lymphocytic leukemia cells

Abstract

The Hedgehog (Hh) pathway regulates cell proliferation and survival and contributes to tumorigenesis. We investigated the expression and function of this pathway in B-cell chronic lymphocytic leukemia (CLL) cells and in healthy B lymphocytes. Profiling of cognate Hh pathway members revealed reduced expression of two key Hh signaling effectors, Smoothened (SMOH) and GLI, in CLL cells, whereas transcription levels of other investigated members resembled normal B-lymphocyte levels. Examining the functional role of SMOH and GLI in cell survival, we found that CLL cells were hardly sensitive toward specific SMOH inhibition, but showed an unspecific decline in cell viability in response to high concentrations of the SMOH antagonist cyclopamine. In contrast, treatment with the novel GLI antagonist GANT61 reduced expression of the target gene Patched and preferentially decreased the viability of malignant cells. Specific RNA interference knockdown experiments in a CLL-derived cell line confirmed the autonomous role of GLI in malignant cell survival. GANT61-induced apoptosis in primary leukemic cells was partly attenuated by protective stromal cells, but not soluble sonic hedgehog ligand. In summary, our data show a downregulation of the classical Hh pathway in CLL and suggest an intrinsic SMOH-independent role of GLI in the ex vivo survival of CLL cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Berman DM, Karhadkar SS, Maitra A, Montes De OR, Gerstenblith MR, Briggs K et al. (2003). Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425: 846–851.

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K et al. (2001). Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2: 172–180.

    Article  CAS  PubMed  Google Scholar 

  • Burger M, Hartmann T, Krome M, Rawluk J, Tamamura H, Fujii N et al. (2005). Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 106: 1824–1830.

    Article  CAS  PubMed  Google Scholar 

  • Caligaris-Cappio F . (2003). Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol 123: 380–388.

    Article  PubMed  Google Scholar 

  • Chen JK, Taipale J, Young KE, Maiti T, Beachy PA . (2002). Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 99: 14071–14076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiorazzi N, Rai KR, Ferrarini M . (2005). Chronic lymphocytic leukemia. N Engl J Med 352: 804–815.

    Article  CAS  PubMed  Google Scholar 

  • Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. (1999). Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  • Dennler S, Andre J, Alexaki I, Li A, Magnaldo T, ten DP et al. (2007). Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo1. Cancer Res 67: 6981–6986.

    Article  CAS  PubMed  Google Scholar 

  • Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P et al. (2008). Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14: 238–249.

    Article  CAS  PubMed  Google Scholar 

  • Dierks C, Grbic J, Zirlik K, Beigi R, Englund NP, Guo GR et al. (2007). Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 13: 944–951.

    Article  CAS  PubMed  Google Scholar 

  • Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G et al. (1995). p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 85: 1580–1589.

    CAS  PubMed  Google Scholar 

  • Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. (2000). Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  • Dohner H, Stilgenbauer S, Dohner K, Bentz M, Lichter P . (1999). Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J Mol Med 77: 266–281.

    Article  CAS  PubMed  Google Scholar 

  • Duman-Scheel M, Weng L, Xin S, Du W . (2002). Hedgehog regulates cell growth and proliferation by inducing cyclin D and cyclin E. Nature 417: 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Ecke I, Rosenberger A, Obenauer S, Dullin C, Aberger F, Kimmina S et al. (2008). Cyclopamine treatment of full-blown Hh/Ptch-associated RMS partially inhibits Hh/Ptch signaling, but not tumor growth. Mol Carcinog 47: 361–372.

    Article  CAS  PubMed  Google Scholar 

  • Ferretti E, De SE, Miele E, Laneve P, Po A, Pelloni M et al. (2008). Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27: 2616–2627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Graves S, Koch U, Liu S, Jankovic V, Buonamici S et al. (2009). Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell 4: 548–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerschmidt M, Brook A, McMahon AP . (1997). The world according to hedgehog. Trends Genet 13: 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Hegde GV, Peterson KJ, Emanuel K, Mittal AK, Joshi AD, Dickinson JD et al. (2008). Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment: a potential new therapeutic target. Mol Cancer Res 6: 1928–1936.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann I, Stover EH, Cullen DE, Mao J, Morgan KJ, Lee BH et al. (2009). Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell 4: 559–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikram MS, Neill GW, Regl G, Eichberger T, Frischauf AM, Aberger F et al. (2004). GLI2 is expressed in normal human epidermis and BCC and induces GLI1 expression by binding to its promoter. J Invest Dermatol 122: 1503–1509.

    Article  CAS  PubMed  Google Scholar 

  • Ingham PW, McMahon AP . (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15: 3059–3087.

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan BG, Ruester B, Dressel L, Stein S, Grez M, Seifried E et al (2007). Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 8: 1966–1974.

    Article  Google Scholar 

  • Ji Z, Mei FC, Xie J, Cheng X . (2007). Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 282: 14048–14055.

    Article  CAS  PubMed  Google Scholar 

  • Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431: 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Kasper M, Regl G, Eichberger T, Frischauf AM, Aberger F . (2007). Efficient manipulation of Hedgehog/GLI signaling using retroviral expression systems 3. Methods Mol Biol 397: 67–78.

    Article  CAS  PubMed  Google Scholar 

  • Knuutila S, Elonen E, Teerenhovi L, Rossi L, Leskinen R, Bloomfield CD et al. (1986). Trisomy 12 in B cells of patients with B-cell chronic lymphocytic leukemia 5. N Engl J Med 314: 865–869.

    Article  CAS  PubMed  Google Scholar 

  • Lagneaux L, Delforge A, Bron D, De BC, Stryckmans P . (1998). Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91: 2387–2396.

    CAS  PubMed  Google Scholar 

  • Lauth M, Bergstrom A, Shimokawa T, Toftgard R . (2007a). Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 104: 8455–8460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauth M, Bergstrom A, Toftgard R . (2007b). Phorbol esters inhibit the Hedgehog signalling pathway downstream of suppressor of fused, but upstream of Gli. Oncogene 26: 5163–5168.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Platt KA, Censullo P, Altaba A . (1997). Gli1 is a target of sonic hedgehog that induces ventral neural tube development. Development 124: 2537–2552.

    CAS  PubMed  Google Scholar 

  • Lindemann RK . (2008). Stroma-initiated hedgehog signaling takes center stage in B-cell lymphoma. Cancer Res 68: 961–964.

    Article  CAS  PubMed  Google Scholar 

  • Lowrey JA, Stewart GA, Lindey S, Hoyne GF, Dallman MJ, Howie SE et al. (2002). Sonic hedgehog promotes cell cycle progression in activated peripheral CD4(+) T lymphocytes. J Immunol 169: 1869–1875.

    Article  CAS  PubMed  Google Scholar 

  • Marigo V, Tabin CJ . (1996). Regulation of patched by sonic hedgehog in the developing neural tube. Proc Natl Acad Sci USA 93: 9346–9351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino S . (2005). Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11: 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Matsenko NU, Rijikova VS, Kovalenko SP . (2008). Comparison of SYBR green I and TaqMan real-time PCR formats for the analysis of her2 gene dose in human breast tumors. Bull Exp Biol Med 145: 240–244.

    Article  CAS  PubMed  Google Scholar 

  • Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. (2005). In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusslein-Volhard C, Wieschaus E . (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287: 795–801.

    Article  CAS  PubMed  Google Scholar 

  • Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein Jr EH, Scott MP . (1997). Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276: 817–821.

    Article  CAS  PubMed  Google Scholar 

  • Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV . (1996). Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 92: 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Patten PE, Buggins AG, Richards J, Wotherspoon A, Salisbury J, Mufti GJ et al. (2008). CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood 111: 5173–5181.

    Article  CAS  PubMed  Google Scholar 

  • Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J et al. (2007). Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104: 4048–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pleyer L, Egle A, Hartmann TN, Greil R . (2009). Molecular and cellular mechanisms of CLL: novel therapeutic approaches. Nat Rev Clin Oncol 6: 405–418.

    Article  CAS  PubMed  Google Scholar 

  • Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS . (1975). Clinical staging of chronic lymphocytic leukemia. Blood 46: 219–234.

    CAS  PubMed  Google Scholar 

  • Regl G, Neill GW, Eichberger T, Kasper M, Ikram MS, Koller J et al. (2002). Human GLI2 and GLI1 are part of a positive feedback mechanism in basal cell carcinoma 10. Oncogene 21: 5529–5539.

    Article  CAS  PubMed  Google Scholar 

  • Riobo NA, Haines GM, Emerson Jr CP . (2006). Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res 66: 839–845.

    Article  CAS  PubMed  Google Scholar 

  • Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H et al. (2004). Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6: 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Sacedon R, Diez B, Nunez V, Hernandez-Lopez C, Gutierrez-Frias C, Cejalvo T et al. (2005). Sonic hedgehog is produced by follicular dendritic cells and protects germinal center B cells from apoptosis. J Immunol 174: 1456–1461.

    Article  CAS  PubMed  Google Scholar 

  • Seiffert M, Stilgenbauer S, Dohner H, Lichter P . (2007). Efficient nucleofection of primary human B cells and B-CLL cells induces apoptosis, which depends on the microenvironment and on the structure of transfected nucleic acids. Leukemia 21: 1977–1983.

    Article  CAS  PubMed  Google Scholar 

  • Sheng T, Li C, Zhang X, Chi S, He N, Chen K et al. (2004). Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 3: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stacchini A, Aragno M, Vallario A, Alfarano A, Circosta P, Gottardi D et al. (1999). MEC1 and MEC2: two new cell lines derived from B-chronic lymphocytic leukaemia in prolymphocytoid transformation. Leuk Res 23: 127–136.

    Article  CAS  PubMed  Google Scholar 

  • Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V et al. (2007). Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA 104: 5895–5900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY et al. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425: 851–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Fallon JF, Beachy PA . (2000). Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100: 423–434.

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Li Y . (2006). Evidence for the direct involvement of (beta)TrCP in Gli3 protein processing. Proc Natl Acad Sci USA 103: 33–38.

    Article  CAS  PubMed  Google Scholar 

  • Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB . (2003). Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422: 313–317.

    Article  CAS  PubMed  Google Scholar 

  • Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE et al. (2003). ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101: 4944–4951.

    Article  CAS  PubMed  Google Scholar 

  • Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP et al. (2008). A paracrine requirement for hedgehog signalling in cancer. Nature 455: 406–410.

    Article  CAS  PubMed  Google Scholar 

  • Zanotti R, Ambrosetti A, Lestani M, Ghia P, Pattaro C, Remo A et al. (2007). ZAP-70 expression, as detected by immunohistochemistry on bone marrow biopsies from early-phase CLL patients, is a strong adverse prognostic factor. Leukemia 21: 102–109.

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J et al. (2009). Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458: 776–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Klinische Malignom und Zytokinforschung Salzburg-Innsbruck GmbH, SFB program P021 to RG, ÖNB research Grant 13420 to TNH., an unrestricted grant from PFIZER corporation Austria Ges.m.b.H, Vienna, and grants from the province of Salzburg. We thank Dr Reinhard Vlasak for help with the production of recombinant Shh protein. FA was supported by Austrian Science Fund (FWF) Grants W1213, P20652 and by the Austrian Genome programme Gen-AU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T N Hartmann or R Greil.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desch, P., Asslaber, D., Kern, D. et al. Inhibition of GLI, but not Smoothened, induces apoptosis in chronic lymphocytic leukemia cells. Oncogene 29, 4885–4895 (2010). https://doi.org/10.1038/onc.2010.243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.243

Keywords

This article is cited by

Search

Quick links