Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The zinc-finger protein KCMF1 is overexpressed during pancreatic cancer development and downregulation of KCMF1 inhibits pancreatic cancer development in mice

Abstract

Potassium channel modulatory factor 1 (KCMF1) was found upregulated in a differential screen in the metaplastic epithelium in the pancreas of transforming growth factor (TGF)-α transgenic mice. Expression analysis indicated broad overexpression in human cancer tissues. Therefore, we investigated the hypothesis that KCMF1 promotes metaplastic changes and tumor development. KCMF1 represents an evolutionarily highly conserved protein with a 95% identity between human and zebrafish. KCMF1 is expressed during embryonic development and in the majority of adult tissues investigated. Upregulation of nuclear KCMF1 expression is evident in preneoplastic lesions and in several epithelial malignancies, such as pancreatic cancer in mice and humans. In cell culture and in the chicken chorioallantoic membrane model, KCMF1 enhances proliferation, migration and invasion of HEK-293 and Panc1 cells. In crossbreeding experiments, KCMF1-knockdown gene trap mice showed a reduced number and size of premalignant lesions and absence of pancreatic cancer formation in TGF-α transgenic mice. This effect is related to the decreased expression of G1 to S cell-cycle regulators such as cyclin D and cyclin-dependent kinase (CDK) 4. Our data support the hypothesis that KCMF1 mediates pro-oncogenic functions in vitro and in vivo and downregulation of KCMF1 results in the inhibition of pancreatic cancer formation in mice. These effects are mediated through downregulation of cell-cycle control genes such as cyclin D and CDK4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CAM:

chorioallantoic membrane

CDK4:

cyclin-dependent kinase 4

FGF:

fibroblast growth factor

KCMF1:

potassium channel modulatory factor 1

PanIN:

pancreatic intraepithelial neoplasia

RT–PCR:

real-time PCR

TGF-α:

transforming growth factor alpha

References

  • Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J et al. (2003). Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17: 3112–3126.

    Article  CAS  Google Scholar 

  • Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M . (1988). Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53: 549–554.

    Article  CAS  Google Scholar 

  • Ambros IM, Ambros PF, Strehl S, Kovar H, Gadner H, Salzer-Kuntschik M . (1991). MIC2 is a specific marker for Ewing's sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing's sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 67: 1886–1893.

    Article  CAS  Google Scholar 

  • Barton CM, Hall PA, Hughes CM, Gullick WJ, Lemoine NR . (1991). Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer. J Pathol 163: 111–116.

    Article  CAS  Google Scholar 

  • Caldas C, Hahn SA, Hruban RH, Redston MS, Yeo CJ, Kern SE . (1994). Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res 54: 3568–3573.

    CAS  PubMed  Google Scholar 

  • Chen HZ, Tsai SY, Leone G . (2009). Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9: 785–797.

    Article  CAS  Google Scholar 

  • de Alava E . (2007). Molecular pathology in sarcomas. Clin Transl Oncol 9: 130–144.

    Article  CAS  Google Scholar 

  • Ghaneh P, Sultana A, Shore S, Stocken D, Neoptolemos J . (2006). The case for adjuvant chemotherapy in pancreatic cancer. Best Pract Res Clin Gastroenterol 20: 383–401.

    Article  CAS  Google Scholar 

  • Gillett C, Smith P, Gregory W, Richards M, Millis R, Peters G et al. (1996). Cyclin D1 and prognosis in human breast cancer. Int J Cancer 69: 92–99.

    Article  CAS  Google Scholar 

  • Hahn SA, Hoque AT, Moskaluk CA, da Costa LT, Schutte M, Rozenblum E et al. (1996). Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res 56: 490–494.

    CAS  PubMed  Google Scholar 

  • Hall M, Peters G . (1996). Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 68: 67–108.

    Article  CAS  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4: 437–450.

    Article  CAS  Google Scholar 

  • Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN et al. (2001). Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25: 579–586.

    Article  CAS  Google Scholar 

  • Jaffee EM, Hruban RH, Canto M, Kern SE . (2002). Focus on pancreas cancer. Cancer Cell 2: 25–28.

    Article  CAS  Google Scholar 

  • Jang JH . (2004). FIGC, a novel FGF-induced ubiquitin-protein ligase in gastric cancers. FEBS Lett 578: 21–25.

    Article  CAS  Google Scholar 

  • Johnson DG, Schwarz JK, Cress WD, Nevins JR . (1993). Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365: 349–352.

    Article  CAS  Google Scholar 

  • Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M et al. (2009). Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci USA 106: 3354–3359.

    Article  CAS  Google Scholar 

  • Kreppel M, Aryee DN, Schaefer KL, Amann G, Kofler R, Poremba C et al. (2006). Suppression of KCMF1 by constitutive high CD99 expression is involved in the migratory ability of Ewing's sarcoma cells. Oncogene 25: 2795–2800.

    Article  CAS  Google Scholar 

  • Kuefer R, Hofer MD, Altug V, Zorn C, Genze F, Kunzi-Rapp K et al. (2004). Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. Br J Cancer 90: 535–541.

    Article  CAS  Google Scholar 

  • Li Z, Stuart RO, Eraly SA, Gittes G, Beier DR, Nigam SK . (2003). Debt91, a putative zinc finger protein differentially expressed during epithelial morphogenesis. Biochem Biophys Res Commun 306: 623–628.

    Article  CAS  Google Scholar 

  • Maitra A, Hruban RH . (2008). Pancreatic cancer. Annu Rev Pathol 3: 157–188.

    Article  CAS  Google Scholar 

  • Mendez J . (2009). Temporal regulation of DNA replication in mammalian cells. Crit Rev Biochem Mol Biol 44: 343–351.

    Article  CAS  Google Scholar 

  • Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA et al. (2003). Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3: 565–576.

    Article  CAS  Google Scholar 

  • Molenaar JJ, Ebus ME, Koster J, van Sluis P, van Noesel CJ, Versteeg R et al. (2008). Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma. Cancer Res 68: 2599–2609.

    Article  CAS  Google Scholar 

  • Nakhai LA, Mohammadirad A, Yasa N, Minaie B, Nikfar S, Ghazanfari G et al. (2007). Benefits of Zataria multiflora Boiss in experimental model of mouse inflammatory bowel disease. Evid Based Complement Alternat Med 4: 43–50.

    Article  Google Scholar 

  • Sandgren EP, Luetteke NC, Qiu TH, Palmiter RD, Brinster RL, Lee DC . (1993). Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Mol Cell Biol 13: 320–330.

    Article  CAS  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  Google Scholar 

  • Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY et al. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425: 851–856.

    Article  CAS  Google Scholar 

  • Tosh D, Slack JM . (2002). How cells change their phenotype. Nat Rev Mol Cell Biol 3: 187–194.

    Article  CAS  Google Scholar 

  • Wagner M, Greten FR, Weber CK, Koschnick S, Mattfeldt T, Deppert W et al. (2001). A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev 15: 286–293.

    Article  CAS  Google Scholar 

  • Wagner M, Lopez ME, Cahn M, Korc M . (1998a). Suppression of fibroblast growth factor receptor signaling inhibits pancreatic cancer growth in vitro and in vivo. Gastroenterology 114: 798–807.

    Article  CAS  Google Scholar 

  • Wagner M, Luhrs H, Kloppel G, Adler G, Schmid RM . (1998b). Malignant transformation of duct-like cells originating from acini in transforming growth factor transgenic mice. Gastroenterology 115: 1254–1262.

    Article  CAS  Google Scholar 

  • Wagner M, Weber CK, Bressau F, Greten FR, Stagge V, Ebert M et al. (2002). Transgenic overexpression of amphiregulin induces a mitogenic response selectively in pancreatic duct cells. Gastroenterology 122: 1898–1912.

    Article  CAS  Google Scholar 

  • Yamamoto M, Tamakawa S, Yoshie M, Yaginuma Y, Ogawa K . (2006). Neoplastic hepatocyte growth associated with cyclin D1 redistribution from the cytoplasm to the nucleus in mouse hepatocarcinogenesis. Mol Carcinog 45: 901–913.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jessica Wegele and Uschi Möhnle for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (SFB518: A10 to MW, A18 to FO and B23 to TW). We thank all the participating members of the SFB518 for helpful discussions, advices and materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Wagner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beilke, S., Oswald, F., Genze, F. et al. The zinc-finger protein KCMF1 is overexpressed during pancreatic cancer development and downregulation of KCMF1 inhibits pancreatic cancer development in mice. Oncogene 29, 4058–4067 (2010). https://doi.org/10.1038/onc.2010.156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.156

Keywords

Search

Quick links