Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of Mdm4 in drug sensitivity of breast cancer cells

Abstract

The p53 tumor suppressor protein is frequently mutated in human tumors. It is thought that the p53 pathway is indirectly impaired in the remaining tumors, for example by overexpression of its important regulators Mdm2 and Mdm4, making them attractive targets for the development of anti-cancer agents. Recent studies have suggested that Mdm4 levels determine the sensitivity of tumor cells for anti-cancer therapy. To investigate this possibility, we studied the drug sensitivity of several breast cancer cell lines containing wild-type p53, but expressing different Mdm4 levels. We show that endogenous Mdm4 levels can affect the sensitivity of breast cancer cells to anti-cancer agents, but in a cell line-dependent manner and depending on an intact apoptotic response. Furthermore, treatment with the non-genotoxic agent Nutlin-3 sensitizes cells for doxorubicin, showing that activation of p53 by targeting its regulators is an efficient strategy to decrease cell viability of breast cancer cells. These results confirm a function of Mdm4 in determining the efficacy of chemotherapeutic agents to induce apoptosis of cancer cells in a p53-dependent manner, although additional undetermined factors also influence the drug response. Targeting Mdm4 to sensitize tumor cells for chemotherapeutic drugs might be a strategy to effectively treat tumors harboring wild-type p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Barbieri E, Mehta P, Chen Z, Zhang L, Slack A, Berg S et al. (2006). MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol Cancer Ther 5: 2358–2365.

    Article  CAS  Google Scholar 

  • Brooks CL, Gu W . (2006). p53 Ubiquitination: Mdm2 and beyond. Mol Cell 21: 307–315.

    Article  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    Article  CAS  Google Scholar 

  • Cao C, Shinohara ET, Subhawong TK, Geng L, Woon KK, Albert JM et al. (2006). Radiosensitization of lung cancer by nutlin, an inhibitor of murine double minute 2. Mol Cancer Ther 5: 411–417.

    Article  CAS  Google Scholar 

  • Carlotti F, Bazuine M, Kekarainen T, Seppen J, Pognonec P, Maassen JA et al. (2004). Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol Ther 9: 209–217.

    Article  CAS  Google Scholar 

  • Coll-Mulet L, Iglesias-Serret D, Santidrian AF, Cosialls AM, de Frias M, Castano E et al. (2006). MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 107: 4109–4114.

    Article  CAS  Google Scholar 

  • Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R et al. (2004). Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24: 5835–5843.

    Article  CAS  Google Scholar 

  • de Graaf P, Little NA, Ramos YF, Meulmeester E, Letteboer SJ, Jochemsen AG . (2003). Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J Biol Chem 278: 38315–38324.

    Article  CAS  Google Scholar 

  • Fuster JJ, Sanz-Gonzalez SM, Moll UM, Andres V . (2007). Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 13: 192–199.

    Article  CAS  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  Google Scholar 

  • Hollestelle A, Nagel JH, Smid M, Lam S, Elstrodt F, Wasielewski M et al. (2009). Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res Treat (in press).

  • Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J . (2006). MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem 281: 33030–33035.

    Article  CAS  Google Scholar 

  • Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M et al. (2004). Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10: 1321–1328.

    Article  CAS  Google Scholar 

  • Kitagawa M, Aonuma M, Lee SH, Fukutake S, McCormick F . (2008). E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 27: 5303–5314.

    Article  CAS  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    Article  CAS  Google Scholar 

  • Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C et al. (2006). Inactivation of the p53 pathway in retinoblastoma. Nature 444: 61–66.

    Article  CAS  Google Scholar 

  • Meulmeester E, Pereg Y, Shiloh Y, Jochemsen AG . (2005). ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle 4: 1166–1170.

    Article  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ . (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245.

    Article  CAS  Google Scholar 

  • Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M et al. (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43.

    Article  CAS  Google Scholar 

  • Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B . (1992). Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83.

    Article  CAS  Google Scholar 

  • Oliver FJ, de la RG, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM . (1998). Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 273: 33533–33539.

    Article  CAS  Google Scholar 

  • Oruetxebarria I, Venturini F, Kekarainen T, Houweling A, Zuijderduijn LM, Mohd-Sarip A et al. (2004). P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 279: 3807–3816.

    Article  CAS  Google Scholar 

  • Patton JT, Mayo LD, Singhi AD, Gudkov AV, Stark GR, Jackson MW . (2006). Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res 66: 3169–3176.

    Article  CAS  Google Scholar 

  • Pereg Y, Lam S, Teunisse A, Biton S, Meulmeester E, Mittelman L et al. (2006). Differential roles of ATM- and Chk2-mediated phosphorylations of Hdmx in response to DNA damage. Mol Cell Biol 26: 6819–6831.

    Article  CAS  Google Scholar 

  • Pereg Y, Shkedy D, de Graaf P, Meulmeester E, Edelson-Averbukh M, Salek M et al. (2005). Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc Natl Acad Sci USA 102: 5056–5061.

    Article  CAS  Google Scholar 

  • Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG . (2001). Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res 61: 1839–1842.

    CAS  PubMed  Google Scholar 

  • Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA et al. (1999). Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59: 6091–6096.

    CAS  PubMed  Google Scholar 

  • Riemenschneider MJ, Knobbe CB, Reifenberger G . (2003). Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int J Cancer 104: 752–757.

    Article  CAS  Google Scholar 

  • Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S et al. (2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105: 3933–3938.

    Article  CAS  Google Scholar 

  • Shapiro CL, Recht A . (2001). Side effects of adjuvant treatment of breast cancer. N Engl J Med 344: 1997–2008.

    Article  CAS  Google Scholar 

  • Shvarts A, Bazuine M, Dekker P, Ramos YF, Steegenga WT, Merckx G et al. (1997). Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics 43: 34–42.

    Article  CAS  Google Scholar 

  • Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M et al. (1996). MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 15: 5349–5357.

    Article  CAS  Google Scholar 

  • Stad R, Little NA, Xirodimas DP, Frenk R, van der Eb AJ, Lane DP et al. (2001). Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep 2: 1029–1034.

    Article  CAS  Google Scholar 

  • Stad R, Ramos YF, Little N, Grivell S, Attema J, Der Eb AJ et al. (2000). Hdmx stabilizes Mdm2 and p53. J Biol Chem 275: 28039–28044.

    CAS  PubMed  Google Scholar 

  • Tewari M, Quan LT, O'rourke K, Desnoyers S, Zeng Z, Beidler DR et al. (1995). Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801–809.

    Article  CAS  Google Scholar 

  • Toledo F, Wahl GM . (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923.

    Article  CAS  Google Scholar 

  • Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H et al. (2006). Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103: 1888–1893.

    Article  CAS  Google Scholar 

  • van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D et al. (2003). Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4: 609–615.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). in vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Wade M, Rodewald LW, Espinosa JM, Wahl GM . (2008). BH3 activation blocks Hdmx suppression of apoptosis and cooperates with Nutlin to induce cell death. Cell Cycle 7: 1973–1982.

    Article  CAS  Google Scholar 

  • Wade M, Wong ET, Tang M, Stommel JM, Wahl GM . (2006). Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem 281: 33036–33044.

    Article  CAS  Google Scholar 

  • Wasielewski M, Elstrodt F, Klijn JG, Berns EM, Schutte M . (2006). Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines. Breast Cancer Res Treat 99: 97–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr G Selivanova for providing RITA, Dr A Levine and Dr G Peters for providing anti-Mdm2 and anti-p16 antibodies, respectively. This study was supported by grants from the Association for International Cancer Research (grant 05-273) and by EC FP6 funding (contract 503576) to AG Jochemsen. This publication reflects the authors’ views and not necessarily those of the European Community. The EC is not liable for any use that may be made of the information contained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A G Jochemsen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, S., Lodder, K., Teunisse, A. et al. Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene 29, 2415–2426 (2010). https://doi.org/10.1038/onc.2009.522

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.522

Keywords

This article is cited by

Search

Quick links