Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

c-Abl regulates estrogen receptor α transcription activity through its stabilization by phosphorylation

Abstract

Estrogen receptors are members of the steroid hormone superfamily of nuclear receptors that act as ligand-activated transcription factors. Similar to other steroid hormone receptors, estrogen receptor α (ERα) is a substrate for protein kinases, and phosphorylation has profound effects on the function of this receptor. In this study, we show that ERα associates with c-Abl nonreceptor tyrosine kinase. The direct interaction is mediated by two PXXP motifs of ERα and the c-Abl SH3 domain. Mutational analysis and in vitro kinase assays show that ERα can be phosphorylated on two sites, tyrosine 52 (Y-52) and tyrosine 219 (Y-219). ERα phosphorylation by c-Abl stabilizes ERα, resulting in enhanced ERα transcriptional activity and increased expression of endogenous ERα target genes. Furthermore, ERα phosphorylation at the Y-219 site affects DNA binding and dimerization by ERα. Both the c-Abl inhibitor and the c-Abl kinase dead mutation abolish the c-Abl-induced accumulation of ERα and enhancement of ERα transcriptional activity, indicating that c-Abl kinase activity is required for regulation of the ERα function. Moreover, the ERα (Y52,219F) mutant shows reduced breast cancer cell growth and invasion. Taken together, these results show that c-Abl is a novel kinase that upregulates ERα expression and promotes breast cancer cell proliferation, suggesting a great potential for this kinase to function as a therapeutic target for breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Acconcia F, Manavathi B, Mascarenhas J . (2006). An inherent role of integrin-linked kinase-estrogen receptor α interaction in cell migration. Cancer Res 66: 11030–11038.

    Article  CAS  PubMed  Google Scholar 

  • Agami R, Blandino G, Oren M, Shaul Y . (1999). Interaction of c-abl and p73a and their collaboration to induce apoptosis. Nature 399: 809–813.

    Article  CAS  PubMed  Google Scholar 

  • Alen P, Claessens F, Schoenmakers E, Swinnen JV, Verhoeven G, Rombauts W et al. (1999). Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1 alpha with multiple steroid receptors and identification of an internally deleted ELE1beta isoform. Mol End 13: 117–128.

    CAS  Google Scholar 

  • Aranda A, Pascual A . (2001). Nuclear hormone receptors and gene expression. Physiol Rev 81: 1269–1304.

    Article  CAS  PubMed  Google Scholar 

  • Arnold SF, Obourn JD, Jaffe H, Notides AC . (1994). Serine 167 is the major estradiol-induced phosphorylation site on the human estrogen receptor. Mol Endocrinol 8: 1208–1214.

    CAS  PubMed  Google Scholar 

  • Arnold SF, Melamed M, Vorojeikina DP, Notides AC, Sasson S . (1997). Estradiol-binding mechanism and binding capacity of the human estrogen receptor is regulated by tyrosine phosphorylation. Mol Endocrinol 11: 48–53.

    Article  CAS  PubMed  Google Scholar 

  • Arnold SF, Obourn JD, Jaffe H, Notides AC . (1995). Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by Src family tyrosine kinases in vitro. Mol Endocrinol 9: 24–33.

    CAS  PubMed  Google Scholar 

  • Baskaran R, Wood LD, Whitaker LL, Canman CE, Morgan SE, Xu Y et al. (1997). Ataxia telangiectasia mutant protein activates c-Abl tyroaine kinase in response to ionizing radiation. Nature 387: 516–519.

    Article  CAS  PubMed  Google Scholar 

  • Brasher BB, Van Etten RA . (2000). c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. J Biol Chem 275: 35631–35637.

    Article  CAS  PubMed  Google Scholar 

  • Bunone G, Briand PA, Miksicek RJ, Picard D . (1996). Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15: 2174–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castano E, Vorojeikina DP, Notides AC . (1997). Phosphorylation of serine- 167 on the human oestrogen receptor is important for oestrogen response element binding and transcriptional activation. J Bio Chem 326: 149–157.

    CAS  Google Scholar 

  • Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H et al. (1996). Role of CBP/p300 in nuclear receptor signalling. Nature 383: 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Washbrook E, Sarwar N . (1999). Phosphorylation of human estrogen receptor α by protein kinase a regulates dimerization. Mol Cell Bio 19: 1002–1015.

    Article  CAS  Google Scholar 

  • Clark DE, Poteet-Smith CE, Smith JA, Lannigan DA . (2001). Rsk2 allosterically activates estrogen receptor alpha by docking to the hormone-binding domain. J EMBO 20: 3484–3494.

    Article  CAS  Google Scholar 

  • Deborah AL . (2003). Estrogen receptor phosphorylation steroids. Steroids 68: 1–9.

    Article  Google Scholar 

  • Ding L, Yan J, Zhu J, Zhong H, Lu Q, Wang Z et al. (2003). Ligand-independent activation of estrogen receptor a by XBP-1. Nucleic Acids Res 31: 5266–5274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H et al. (1999). Purification and identification of p68 RNA helicase acting as atranscriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19: 5363–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frech MS, Halama ED, Tilli MT . (2005). Deregulated estrogen receptorα expression in mammary epithelial cells of transgenic mice results in the development of ductal carcinoma in situ. Furth Cancer Res 65: 681–685.

    CAS  PubMed  Google Scholar 

  • Han J, Ding L, Yuan B, Yang X, Wang X, Li J et al. (2006). Hepatitis B virus X protein and the estrogen receptor variant lacking exon 5 inhibit estrogen receptor signaling in hepatoma cells. Nucleic Acids Res 34: 3095–3106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Wei C, Song T, Yuan J, Zhang Y, Ma Q et al. (2009). Proliferating cell nuclear antigen destabilizes c-Abl tyrosine kinase and regulates cell apoptosis in response to DNA damage. Apoptosis 14: 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Hiroko Y, Nishio M, Kobayashi S, Ando Y, Sugiura H, Zhang Z et al. (2005). Phosphorylation of estrogen receptor α serine 167 is predictive of response to endocrine therapy and increases postrelapse survival in metastatic breast cancer. Breast Cancer Res 7: 753–764.

    Article  Google Scholar 

  • Jallal H, Valentino ML, Chen G, Boschelli F, Ali S, Rabbani SA . (2007). A Src/abl Kinase inhibitor, sKI-606, blocks breast cancer invasion, growth, and metastasis in vitro and in vivo. Cancer Res 67: 1580–1588.

    Article  CAS  PubMed  Google Scholar 

  • Joel PB, Traish AM, Lannigan DA . (1995). Estradiol and phorbol ester cause phosphorylation of serine 118 in the human estrogen receptor. Mol Endocrinol 9: 1041–1052.

    CAS  PubMed  Google Scholar 

  • Joel PB, Traish AM, Lannigan DA . (1998). Estradiol-induced phosphorylation of Serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J Biol Chem 273: 13317–13323.

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H et al. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491–1494.

    Article  CAS  PubMed  Google Scholar 

  • Katzenellenbogen BS . (1996). Estrogen receptors: bioactivities and interactions with cell signaling pathways. Biol Reprod 54: 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Katzenellenbogen BS, Montano MM, Ekena K . (1997). Antiestrogens: mechanisms of action and resistance in breast cancer. Breast Cancer Res Treat 44: 23–38.

    Article  CAS  PubMed  Google Scholar 

  • Katzenellenbogen BS, O'Malley BW, Katzenellenbogen JA . (2000). Estrogen receptor transcription and transactivation: estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Res 2: 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Woo HY, Koo HH, Tak EY, Kim SH . (2004). ABL oncogene amplification with p16(INK4a) gene deletion in precursor T-cell acute lymphoblastic leukemia/lymphoma: report of the first case. Am J Hematol 76: 360–363.

    Article  CAS  PubMed  Google Scholar 

  • Klinge CM . (2000). Estrogen receptor interaction with co-activators and co-repressors. Steroids 65: 227–251.

    Article  CAS  PubMed  Google Scholar 

  • Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS . (1994). Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 269: 4458–4466.

    CAS  PubMed  Google Scholar 

  • Liu X, Huang W, Li C, Li P, Yuan J, Li X et al. (2006). Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation. Mol Cell 22: 317–327.

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio A, Castoria G, Di Domenico M, de Falco A, Bilancio A, Lombardi M et al. (2000). Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 19: 5406–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W et al. (2003). Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112: 859–871.

    Article  CAS  PubMed  Google Scholar 

  • Nagano K, Itagaki C, Izumi T, Nunomura K, Soda Y, Tani K et al. (2006). Rb plays a role in survival of Abl-dependent human tumor cells as a downstream effector of Abl tyrosine kinase. Oncogene 25: 493–502.

    Article  CAS  PubMed  Google Scholar 

  • Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ . (2005). Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65: 11118–11128.

    Article  CAS  PubMed  Google Scholar 

  • Noren NK, Foos G, Hauser CA, Pasquale EB . (2006). The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 8: 815–825.

    Article  CAS  PubMed  Google Scholar 

  • Pace P, Taylor J, Suntharalingam S, Coombes RC, Ali S . (1997). Human estrogen receptor beta binds DNA in a manner similar to and dimerises with estrogen receptor alpha. J Biol Chem 272: 25832–25838.

    Article  CAS  PubMed  Google Scholar 

  • Pendergast AM . (2001). BCR-ABL protein domain, function, and signaling. In: Carella AM, Daley GQ, Eaves CJ, Goldman JM, Helmanns R, (eds). Chronic Myeloid Leukaemia: Biology and Treatment. Martin Dunitz Ltd: London, 19–39.

    Google Scholar 

  • Pendergast AM . (2002). The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 85: 51–100.

    Article  CAS  PubMed  Google Scholar 

  • Plattner R, Kadlec L, DeMali KA, Kazlauskas A, Pendergast AM . (1999). c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev 13: 2400–2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina D, Ahmad R, Kumar S, Ren J, Yoshida K, Kharbanda S . (2006). MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. J EMBO 25: 3774–3783.

    Article  CAS  Google Scholar 

  • Rayala SK, Talukder AH, Balasenthil S, Tharakan R, Barnes CJ, Wang RA . (2006). P21-activated kinase 1 regulation of estrogen receptor-α activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Res 66: 1694–1701.

    Article  CAS  PubMed  Google Scholar 

  • Senad M, Alexander H, Barbara DS, Jean G, Rincke G, Mayer D . (2005). The Glycogen synthase kinase-3 interacts with and phosphorylates estrogen receptor α and is involved in the regulation of receptor activity. J Biol Chem 280: 33006–33014.

    Article  Google Scholar 

  • Singer CF, Hudelist G, Lamm W, Mueller R, Czerwenka K, Kubista E . (2004). Expression of tyrosine kinases in human malignancies as potential targets for kinase-specific inhibitors. Endocr Relat Cancer 11: 861–869.

    Article  CAS  PubMed  Google Scholar 

  • Skorski T, Nieborowska-Skorska M, Wlodarski P, Wasik M, Trotta R, Kanakaraj P et al. (1998). The SH3 domain contributes to BCR/ABL-dependent leukemogenesis in vivo: role in adhesion, invasion and homing. Blood 91: 406–418.

    CAS  PubMed  Google Scholar 

  • Srinivasan D, Plattner R . (2006). Activation of abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res 66: 5648–5655.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan D, Sims JT, Plattner R . (2008). Aggressive breast cancer cells are dependent on activated Abl kinases for proliferation, anchorage-independent growth and survival. Oncogene 27: 1095–1105.

    Article  CAS  PubMed  Google Scholar 

  • Taagepera S, McDonald D, Loeb J, Whitaker L, McElroy A, Wang J et al. (1998). Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA 95: 7457–7462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay A, Tremblay GB, Labrie F, Giguere V . (1999). Ligand-independent recruitment of SRC-1 to estrogen receptor β through phosphorylation of activation function AF-1. Mol Cell 3: 513–519.

    Article  CAS  PubMed  Google Scholar 

  • Tsai KKC, Yuan ZM . (2003). c-Abl stabilizes p73 by a phosphorylation-augmented interaction. Cancer Res 63: 3418–3424.

    CAS  PubMed  Google Scholar 

  • Van Diest PJ, Van der Wall E, Baak JPA . (2004). Prognostic value of proliferation in invasive breast cancer: a review. J Clin Pathol 57: 675–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R et al. (2006). ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol 5: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigel NL, Zhang Y . (1998). Ligand-independent activation of steroid hormone receptors. J Mol Med 76: 469–479.

    Article  CAS  PubMed  Google Scholar 

  • Wen S-T, Jackson PK, Van Etten RA . (1996). The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J 15: 1583–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Glass CK, Rosenfeld MG . (1999). Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9: 140–147.

    Article  CAS  PubMed  Google Scholar 

  • Yao TP, Ku G, Zhou N, Scully R, Livingston DM . (1996). The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. PNAS 93: 10626–10631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Yamaguchi T, Natsume T, Kufe D, Miki Y . (2005). JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat Cell Biol 7: 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Huang Y, Whang Y, Sawyers C, Weichselbaum R, Kharbanda S et al. (1996). Role for c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature 382: 272–274.

    Article  CAS  PubMed  Google Scholar 

  • Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY et al. (1999). p73 is regulatedby tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399: 814–817.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation (30772605, 30700413, 30870500, 30871276 and 30530320) and by the Beijing Natural Science Foundation (7092081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q Ye or H Zhong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Zheng, Z., Song, T. et al. c-Abl regulates estrogen receptor α transcription activity through its stabilization by phosphorylation. Oncogene 29, 2238–2251 (2010). https://doi.org/10.1038/onc.2009.513

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.513

Keywords

This article is cited by

Search

Quick links