Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

XAF1 destabilizes estrogen receptor α through the assembly of a BRCA1-mediated destruction complex and promotes estrogen-induced apoptosis

Abstract

X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a pro-apoptotic tumor suppressor that is frequently inactivated in multiple human cancers. However, its candidacy as a suppressor in the pathogenesis of breast cancer remains undefined. Here, we report that XAF1 acts as a molecular switch in estrogen (E2)-mediated cell-fate decisions favoring apoptosis over cell proliferation. XAF1 promoter hypermethylation is observed predominantly in estrogen receptor α (ERα)-positive versus ERα-negative tumor cells and associated with attenuated apoptotic response to E2. XAF1 is activated by E2 through a G protein-coupled estrogen receptor-mediated non-genomic pathway and induces ERα degradation and apoptosis while it is repressed by ERα for E2 stimulation of cell proliferation. The XAF1-ERα mutual antagonism dictates the outcomes of E2 signaling and its alteration is linked to the development of E2-resistant tumors. Mechanistically, XAF1 destabilizes ERα through the assembly of breast cancer-associated gene 1 (BRCA1)-mediated destruction complex. XAF1 interacts with ERα and BRCA1 via the zinc finger (ZF) domains 5/6 and 4, respectively, and the mutants lacking either of these domains fail to drive ERα ubiquitination and apoptosis. E2-induced regression of XAF1+/+ tumors is abolished by XAF1 depletion while XAF1−/− tumors recover E2 response by XAF1 restoration. XAF1 and ERα expression show an inverse correlation in primary breast tumors, and XAF1 expression is associated with the overall survival of patients with ERα-positive but not ERα-negative cancer. Together, this study uncovers an important role for the XAF1-ERα antagonism as a linchpin to govern E2-mediated cell-fate decisions, illuminating the mechanistic consequence of XAF1 alteration in breast tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: XAF1 promotes E2-induced apoptosis in ERα+ cells.
Fig. 2: E2 activation of XAF1 transcription and its repression by ERα.
Fig. 3: XAF1 stimulation of ERα ubiquitination and degradation.
Fig. 4: XAF1 binds directly to ERα.
Fig. 5: XAF1 interacts directly with BRCA1 to facilitate ERα ubiquitination.
Fig. 6: Role of a XAF1-ERα axis in E2-mediated tumor regression.
Fig. 7: Schematic representation of the antagonistic interplay of XAF1 and ERα and its role in estrogen-mediated cell-fate decisions.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D, et al. Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol. 2001;3:128–33.

    Article  CAS  PubMed  Google Scholar 

  2. Byun DS, Cho K, Ryu BK, Lee MG, Kang MJ, Kim HR, et al. Hypermethylation of XIAP-associated factor 1, a putative tumor suppressor gene from the 17p13.2 locus, in human gastric adenocarcinomas. Cancer Res. 2003;63:7068–75.

    CAS  PubMed  Google Scholar 

  3. Lee MG, Huh JS, Chung SK, Lee JH, Byun DS, Ryu BK, et al. Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses. Oncogene. 2006;25:5807–22.

    Article  CAS  PubMed  Google Scholar 

  4. Chung SK, Lee MG, Ryu BK, Lee JH, Han J, Byun DS, et al. Frequent alteration of XAF1 in human colorectal cancers: implication for tumor cell resistance to apoptotic stresses. Gastroenterology. 2007;132:2459–77.

    Article  CAS  PubMed  Google Scholar 

  5. Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG. Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics. 2000;70:113–22.

    Article  CAS  PubMed  Google Scholar 

  6. Xia Y, Novak R, Lewis J, Duckett CS, Phillips AC. Xaf1 can cooperate with TNFalpha in the induction of apoptosis, independently of interaction with XIAP. Mol Cell Biochem. 2006;286:67–76.

    Article  CAS  PubMed  Google Scholar 

  7. Leaman DW, Chawla-Sarkar M, Vyas K, Reheman M, Tamai K, Toji S, et al. Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem. 2002;277:28504–11.

    Article  CAS  PubMed  Google Scholar 

  8. Micali OC, Cheung HH, Plenchette S, Hurley SL, Liston P, LaCasse EC, et al. Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-beta. BMC Cancer. 2007;7:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Tu SP, Sun YW, Cui JT, Zou B, Lin MC, Gu Q, et al. Tumor suppressor XIAP-Associated factor 1 (XAF1) cooperates with tumor necrosis factor-related apoptosis-inducing ligand to suppress colon cancer growth and trigger tumor regression. Cancer. 2010;116:1252–63.

    Article  CAS  PubMed  Google Scholar 

  10. Sun PH, Zhu LM, Qiao MM, Zhang YP, Jiang SH, Wu YL, et al. The XAF1 tumor suppressor induces autophagic cell death via upregulation of Beclin-1 and inhibition of Akt pathway. Cancer Lett. 2011;310:170–80.

    CAS  PubMed  Google Scholar 

  11. Zhu LM, Shi DM, Dai Q, Cheng XJ, Yao WY, Sun PH, et al. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma. Oncotarget. 2014;5:5403–15.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang J, Gu Q, Li M, Zhang W, Yang M, Zou B, et al. Identification of XAF1 as a novel cell cycle regulator through modulating G(2)/M checkpoint and interaction with checkpoint kinase 1 in gastrointestinal cancer. Carcinogenesis. 2009;30:1507–16.

    Article  CAS  PubMed  Google Scholar 

  13. Lee MG, Han J, Jeong SI, Her NG, Lee JH, Ha TK, et al. XAF1 directs apoptotic switch of p53 signaling through activation of HIPK2 and ZNF313. Proc Natl Acad Sci USA. 2014;111:15532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeong SI, Kim JW, Ko KP, Ryu BK, Lee MG, Kim HJ, et al. XAF1 forms a positive feedback loop with IRF-1 to drive apoptotic stress response and suppress tumorigenesis. Cell Death Dis. 2018;9:806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Shin CH, Lee MG, Han J, Jeong SI, Ryu BK, Chi SG. Identification of XAF1-MT2A mutual antagonism as a molecular switch in cell-fate decisions under stressful conditions. Proc Natl Acad Sci USA. 2017;114:5683–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rahman SA, Al-Marzouki A, Otim M, Khalil Khayat NEH, Yousuf R, Rahman P. Awareness about breast cancer and breast self-examination among female students at the university of sharjah: a cross-sectional study. Asian Pac J Cancer Prev. 2019;20:1901–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Osborne CK, Schiff R, Fuqua SA, Shou J. Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res. 2001;7:4338s–42s.

    CAS  PubMed  Google Scholar 

  18. Lewis-Wambi JS, Jordan VC. Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res. 2009;11:206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9:631–43.

    Article  CAS  PubMed  Google Scholar 

  20. Acconcia F, Fiocchetti M, Marino M. Xenoestrogen regulation of Erα/Erβ balance in hormone-associated cancers. Mol Cell Endocrinol. 2017;457:3–12.

    Article  CAS  PubMed  Google Scholar 

  21. Leclercq G, Lacroix M, Laïos I, Laurent G. Estrogen receptor alpha: impact of ligands on intracellular shuttling and turnover rate in breast cancer cells. Curr Cancer Drug Targets. 2006;6:39–64.

    Article  CAS  PubMed  Google Scholar 

  22. Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29:2905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Riggins RB, Schrecengost RS, Guerrero MS, Bouton AH. Pathways to tamoxifen resistance. Cancer Lett. 2007;256:1–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burns KA, Korach KS. Estrogen receptors and human disease: an update. Arch Toxicol. 2012;86:1491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kota K, Brufsky A, Oesterreich S, Lee A. Estradiol as a targeted, late-line therapy in metastatic breast cancer with estrogen receptor amplification. Cureus. 2017;9:e1434.

    PubMed  PubMed Central  Google Scholar 

  26. Coelingh Bennink HJ, Verhoeven C, Dutman AE, Thijssen J. The use of high-dose estrogens for the treatment of breast cancer. Maturitas. 2017;95:11–23.

    Article  CAS  PubMed  Google Scholar 

  27. Ellis MJ, Gao F, Dehdashti F, Jeffe DB, Marcom PK, Carey LA, et al. Lower-dose vs high-dose oral estradiol therapy of hormone receptor-positive, aromatase inhibitor-resistant advanced breast cancer: a phase 2 randomized study. JAMA. 2009;302:774–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lewis JS, Meeke K, Osipo C, Ross EA, Kidawi N, Li T, et al. Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation. J Natl Cancer Inst. 2005;97:1746–59.

    Article  CAS  PubMed  Google Scholar 

  29. Seval Y, Cakmak H, Kayisli UA, Arici A. Estrogen-mediated regulation of p38 mitogen-activated protein kinase in human endometrium. J Clin Endocrinol Metab. 2006;91:2349–57.

    Article  CAS  PubMed  Google Scholar 

  30. Altiok N, Koyuturk M, Altiok S. JNK pathway regulates estradiol-induced apoptosis in hormone-dependent human breast cancer cells. Breast Cancer Res Treat. 2007;105:247–54.

    Article  CAS  PubMed  Google Scholar 

  31. Sun M, Isaacs GD, Hah N, Heldring N, Fogarty EA, Kraus WL. Estrogen regulates JNK1 genomic localization to control gene expression and cell growth in breast cancer cells. Mol Endocrinol. 2012;26:736–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carmeci C, Thompson DA, Ring HZ, Francke U, Weigel RJ. Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics. 1997;45:607–17.

    Article  CAS  PubMed  Google Scholar 

  33. Han J, Kim YL, Lee KW, Her NG, Ha TK, Yoon S, et al. ZNF313 is a novel cell cycle activator with an E3 ligase activity inhibiting cellular senescence by destabilizing p21(WAF1). Cell Death Differ. 2013;20:1055–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res. 2014;20:1757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chi D, Singhal H, Li L, Xiao T, Liu W, Pun M, et al. Estrogen receptor signaling is reprogrammed during breast tumorigenesis. Proc Natl Acad Sci USA. 2019;116:11437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pedram A, Razandi M, Aitkenhead M, Hughes CC, Levin ER. Integration of the non-genomic and genomic actions of estrogen. Membrane-initiated signaling by steroid to transcription and cell biology. J Biol Chem. 2002;277:50768–75.

    Article  CAS  PubMed  Google Scholar 

  37. Deng Y, Miki Y, Nakanishi A. Estradiol/GPER affects the integrity of mammary duct-like structures in vitro. Sci Rep. 2020;10:1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Altiok N, Ersoz M, Koyuturk M. Estradiol induces JNK-dependent apoptosis in glioblastoma cells. Oncol Lett. 2011;2:1281–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carroll JS. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer. Eur J Endocrinol. 2016;175:R41–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fang X, et al. Switch to full-length of XAF1 mRNA expression in prostate cancer cells by the DNA methylation inhibitor. Int J Cancer. 2006;118:2485–9.

    Article  CAS  PubMed  Google Scholar 

  41. Thangaraju M, Kaufmann SH, Couch FJ. BRCA1 facilitates stress-induced apoptosis in breast and ovarian cancer cell lines. J Biol Chem. 2000;275:33487–96.

    Article  CAS  PubMed  Google Scholar 

  42. Wang RH, Yu H, Deng CX. A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc Natl Acad Sci USA. 2004;101:17108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Monteiro AN. BRCA1: exploring the links to transcription. Trends Biochem Sci. 2000;25:469–74.

    Article  CAS  PubMed  Google Scholar 

  44. Xia Y, Pao GM, Chen HW, Verma IM, Hunter T. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem. 2003;278:5255–63.

    Article  CAS  PubMed  Google Scholar 

  45. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 2001;276:14537–40.

    Article  CAS  PubMed  Google Scholar 

  46. Eakin CM, Maccoss MJ, Finney GL, Klevit RE. Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci USA. 2007;104:5794–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou W, Slingerland JM. Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nat Rev Cancer. 2014;14:26–38.

    Article  CAS  PubMed  Google Scholar 

  48. Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, et al. p300 Modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Res. 2002;62:141–51.

    CAS  PubMed  Google Scholar 

  49. Ma Y, Fan S, Hu C, Meng Q, Fuqua SA, Pestell RG, et al. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha. Mol Endocrinol. 2010;24:76–90.

    Article  CAS  PubMed  Google Scholar 

  50. Dizin E, Irminger-Finger I. Negative feedback loop of BRCA1-BARD1 ubiquitin ligase on estrogen receptor alpha stability and activity antagonized by cancer-associated isoform of BARD1. Int J Biochem Cell Biol. 2010;42:693–700.

    Article  CAS  PubMed  Google Scholar 

  51. Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C, et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 1999;97:575–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by the National Cancer Center (HA17C0034, SGC), the National Research Foundation of Korea (NRF-2021R1A2B03002487, SGC), and Korea University Grant (K2006781, SGC), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

JSL, KWL, KPK, SIJ, BKR, and MGL performed experiments. MGL and SGC provided interpretation of the data. JSL and SGC wrote the manuscript. SGC is responsible for designing and funding collections. All authors have approved this manuscript.

Corresponding author

Correspondence to Sung-Gil Chi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, JS., Lee, KW., Ko, KP. et al. XAF1 destabilizes estrogen receptor α through the assembly of a BRCA1-mediated destruction complex and promotes estrogen-induced apoptosis. Oncogene 41, 2897–2908 (2022). https://doi.org/10.1038/s41388-022-02315-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02315-9

Search

Quick links