Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA

Abstract

Trim24 (Tif1α) and Trim33 (Tif1γ) interact to form a co-repressor complex that suppresses murine hepatocellular carcinoma. Here we show that Trim24 and Trim33 cooperatively repress retinoic acid receptor–dependent activity of VL30-class endogenous retroviruses (ERVs) in liver. In Trim24-knockout hepatocytes, VL30 derepression leads to accumulation of reverse-transcribed VL30 cDNA in the cytoplasm that correlates with activation of the viral-defense interferon responses mimicking the preneoplastic inflammatory state seen in human liver following exogenous viral infection. Furthermore, upon derepression, VL30 long terminal repeats (LTRs) act as promoter and enhancer elements deregulating expression of neighboring genes and generating enhancer RNAs that are required for LTR enhancer activity in hepatocytes in vivo. These data reinforce the role of the TRIM family of proteins in retroviral restriction and antiviral defense and provide an example of an ERV-derived oncogenic regulatory network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene expression following Trim24 and Trim33 inactivation.
Figure 2: VL30 expression is dependent on Trim24 and Rarα.
Figure 3: A VL30 LTR acts as an alternative promoter for Mbd1.
Figure 4: LTR-driven transcription.
Figure 5: A VL30 LTR-derived noncoding transcript at the Lcn13 and Bmyc locus.
Figure 6: A VL30 element regulates activity of a cryptic promoter in the Ccdc11 gene.
Figure 7: Lcn13 and Ccdc11 expression is dependent on VL30 LTR–derived eRNAs.
Figure 8: Model for Trim24 tumor-suppressor function in liver.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Feschotte, C. & Gilbert, C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13, 283–296 (2012).

    Article  CAS  Google Scholar 

  2. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).

    Article  CAS  Google Scholar 

  3. Lynch, V.J., Leclerc, R.D., May, G. & Wagner, G.P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154–1159 (2011).

    Article  CAS  Google Scholar 

  4. Wolf, D. & Goff, S.P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458, 1201–1204 (2009).

    Article  CAS  Google Scholar 

  5. Rowe, H.M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    Article  CAS  Google Scholar 

  6. McNab, F.W., Rajsbaum, R., Stoye, J.P. & O′Garra, A. Tripartite-motif proteins and innate immune regulation. Curr. Opin. Immunol. 23, 46–56 (2011).

    Article  CAS  Google Scholar 

  7. Nisole, S., Stoye, J.P. & Saib, A. TRIM family proteins: retroviral restriction and antiviral defence. Nat. Rev. Microbiol. 3, 799–808 (2005).

    Article  CAS  Google Scholar 

  8. Kawai, T. & Akira, S. Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins. EMBO Mol. Med. 3, 513–527 (2011).

    Article  CAS  Google Scholar 

  9. Herquel, B., Ouararhni, K. & Davidson, I. The TIF1α-related TRIM cofactors couple chromatin modifications to transcriptional regulation, signaling and tumor suppression. Transcription 2, 231–236 (2011).

    Article  Google Scholar 

  10. Tsai, W.W. et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 468, 927–932 (2010).

    Article  CAS  Google Scholar 

  11. Agricola, E., Randall, R.A., Gaarenstroom, T., Dupont, S. & Hill, C.S. Recruitment of TIF1γ to chromatin via Its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities. Mol. Cell 43, 85–96 (2011).

    Article  CAS  Google Scholar 

  12. Khetchoumian, K. et al. Loss of Trim24 (Tif1α) gene function confers oncogenic activity to retinoic acid receptor alpha. Nat. Genet. 39, 1500–1506 (2007).

    Article  CAS  Google Scholar 

  13. Khetchoumian, K. et al. Trim24 (Tif1α): an essential ′brake′ for retinoic acid-induced transcription to prevent liver cancer. Cell Cycle 7, 3647–3652 (2008).

    Article  CAS  Google Scholar 

  14. Herquel, B. et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 108, 8212–8217 (2011).

    Article  CAS  Google Scholar 

  15. French, N.S. & Norton, J.D. Structure and functional properties of mouse VL30 retrotransposons. Biochim. Biophys. Acta 1352, 33–47 (1997).

    Article  CAS  Google Scholar 

  16. Nilsson, M. & Bohm, S. Inducible and cell type-specific expression of VL30 U3 subgroups correlate with their enhancer design. J. Virol. 68, 276–288 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tisserand, J. et al. Tripartite motif 24 (Trim24/Tif1α) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor α (Rarα) inhibition. J. Biol. Chem. 286, 33369–33379 (2011).

    Article  CAS  Google Scholar 

  18. Bhoj, V.G. & Chen, Z.J. Linking retroelements to autoimmunity. Cell 134, 569–571 (2008).

    Article  CAS  Google Scholar 

  19. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  Google Scholar 

  20. Islam, T.C. & Toftgard, R. Nuclear orphan receptor-binding retinoic acid response elements in keratinocytes. Biochem. Biophys. Res. Commun. 203, 545–552 (1994).

    Article  CAS  Google Scholar 

  21. Benhaddou, A. et al. Transcription factor TEAD4 regulates expression of Myogenin and the unfolded protein response genes during C2C12 cell differentiation. Cell Death Differ. 19, 220–231 (2012).

    Article  CAS  Google Scholar 

  22. Kim, T.K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  Google Scholar 

  23. Kowalczyk, M.S. et al. Intragenic enhancers act as alternative promoters. Mol. Cell 45, 447–458 (2012).

    Article  CAS  Google Scholar 

  24. Koch, F. et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 18, 956–963 (2011).

    Article  CAS  Google Scholar 

  25. Bulger, M. & Groudine, M. Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327–339 (2011).

    Article  CAS  Google Scholar 

  26. Islam, T.C., Bugge, T.H. & Bohm, S. The long terminal repeat of VL30 retrotransposons contains sequences that determine retinoic acid-induced transcription in cultured keratinocytes. J. Biol. Chem. 268, 3251–3259 (1993).

    CAS  PubMed  Google Scholar 

  27. Brunmeir, R. et al. Epigenetic regulation of a murine retrotransposon by a dual histone modification mark. PLoS Genet. 6, e1000927 (2010).

    Article  Google Scholar 

  28. Nielsen, A.L. et al. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J. 18, 6385–6395 (1999).

    Article  CAS  Google Scholar 

  29. Crow, Y.J. & Rehwinkel, J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum. Mol. Genet. 18, R130–R136 (2009).

    Article  CAS  Google Scholar 

  30. Hatakeyama, S. TRIM proteins and cancer. Nat. Rev. Cancer 11, 792–804 (2011).

    Article  CAS  Google Scholar 

  31. Sun, B. & Karin, M. Obesity, inflammation, and liver cancer. J. Hepatol. 56, 704–713 (2012).

    Article  CAS  Google Scholar 

  32. Alison, M.R., Nicholson, L.J. & Lin, W.R. Chronic inflammation and hepatocellular carcinoma. Recent Results Cancer Res. 185, 135–148 (2011).

    Article  CAS  Google Scholar 

  33. Crow, Y.J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    Article  CAS  Google Scholar 

  34. Crow, Y.J. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    Article  CAS  Google Scholar 

  35. Ørom, U.A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    Article  Google Scholar 

  36. Ørom, U.A. & Shiekhattar, R. Long non-coding RNAs and enhancers. Curr. Opin. Genet. Dev. 21, 194–198 (2011).

    Article  Google Scholar 

  37. Ho, Y., Elefant, F., Liebhaber, S.A. & Cooke, N.E. Locus control region transcription plays an active role in long-range gene activation. Mol. Cell 23, 365–375 (2006).

    Article  CAS  Google Scholar 

  38. De Santa, F. et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).

    Article  Google Scholar 

  39. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  Google Scholar 

  40. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  Google Scholar 

  41. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  42. Choukrallah, M.A. et al. Interconversion between active and inactive TATA-binding protein transcription complexes in the mouse genome. Nucleic Acids Res. 40, 1446–1459 (2012).

    Article  CAS  Google Scholar 

  43. Ye, T. et al. seqMINER: an integrated ChIP-seq data interpretation platform. Nucleic Acids Res. 39, e35 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following members of the Institute de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France: P. Koebel for AAV production, M. Cervino for mouse genotyping, Y. Lutz for microscopy, D. Umlauf for gift of digitonin, M. Philipps, and S. Vicaire for high-throughput sequencing. We thank the Penn Vector Core, School of Medicine Gene Therapy Program, University of Pennsylvania for the pAAV2/9 plasmid. This work was supported by institutional grants from the Centre National de la Recherche Scientifique, the Institut National de Sante et de la Recherche Médicale, the Université de Strasbourg, the Association pour la Recherche contre le Cancer, the Ligue Nationale contre le Cancer, and the Institut National du Cancer grant No 2008-037, the EuTRACC program of the European Union and the French Agence National pour la Recherche. I.D. is supported as an 'équipe labellisée' of the Ligue Nationale contre le Cancer. B.H. was supported by a fellowship from the Association pour la Recherche contre le Cancer.

Author information

Authors and Affiliations

Authors

Contributions

B.H. performed all the RNA-seq, qPCR and ChIP-seq and generated and maintained the different mouse lines together with K.O.; F.C. and K.O. generated and analyzed the MEFs; I.M. performed the Trim24 ChIPs; S.L.G., T.Y. and C.K. performed the bioinformatics analysis of the ChIP-seq and RNA-seq data; T.L. performed the 5′ RACE; B.J. generated the libraries for the ChIP-seq and RNA-seq; B.H., R.L. and I.D. designed experiments analyzed the data and wrote the paper.

Corresponding author

Correspondence to Irwin Davidson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 12139 kb)

Supplementary Data set

Supplementary Table 1 (XLS 221 kb)

Supplementary Data set

Supplementary Table 2 (XLS 53 kb)

Supplementary Data set

Supplementary Table 3 (XLS 78 kb)

Supplementary Data set

Supplementary Table 4 (XLS 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herquel, B., Ouararhni, K., Martianov, I. et al. Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA. Nat Struct Mol Biol 20, 339–346 (2013). https://doi.org/10.1038/nsmb.2496

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing