Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Testicular biopsy in prepubertal boys: a worthwhile minor surgical procedure?

Key Points

  • Testicular biopsy can be performed in children for diagnostic purposes or potentially for therapeutic reasons

  • Patients with gonadal dysgenesis and severe undermasculinization are at considerable risk of germ cell tumours

  • Carcinoma in situ or gonadoblastoma can be detected in the dysgenetic gonads of patients with disorders of sexual development using immunohistochemical markers for OCT-3/4, Kit ligand (SCF) and TSPY

  • Testicular biopsy performed on a prepubertal testicle does not lead to formation of antisperm antibodies or testicular microlithiasis

  • Testicular histology is of considerable value in the prediction of fertility potential in individuals with undescended testes

  • Cryopreservation of testicular tissue samples shows promise for the preservation of fertility in prepubertal boys who receive gonadotoxic chemotherapy

Abstract

No consensus exists regarding the precise role of testicular biopsy in prepubertal boys, although it is considered useful for assessing the potential consequences of undescended testes on fertility. Current scientific knowledge indicates that surgeons should broaden indications for this procedure. For example, the use of immunohistochemical markers such as OCT/3-4, TSPY, Kit ligand (SCF) and ALPP (PLAP) has considerably facilitated the detection of germ cell tumour precursors, such as carcinoma in situ and/or gonadoblastoma. These markers are very important for evaluating malignancy risk in undervirilized patients with 46,XY disorders of sexual development. Testicular histology is also of considerable value in the prediction of both fertility potential and risk of cancer in individuals with undescended testes, particularly those with intraabdominal undescended testes. New possibilities for the preservation of fertility after gonadotoxic chemotherapy — even for prepubertal boys — are emerging. Cryopreservation of testicular tissue samples for the preservation of fertility — although still an experimental method at present — is appealing in this context. In our opinion, testicular biopsy in prepubertal boys is a minor procedure that can provide valuable information for predicting the risk of malignancy and fertility, and might be useful in fertility preservation in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Testicular biopsy.
Figure 2: Complete androgen insensitivity syndrome (CAIS) associated with carcinoma in situ (CIS).
Figure 3: Gonadoblastoma of a dysgenetic gonad.
Figure 4: Gonadal management algorithm for prepubertal boys with 46,XY disorders of sexual development according to GCT risk.
Figure 5: Algorithm for the management of boys with focal testicular microlithiasis.

Similar content being viewed by others

References

  1. Hadziselimovic, F., Hecker, E. & Herzog, B. The value of testicular biopsy in cryptorchidism. Urol. Res. 12, 171–174 (1984).

    CAS  PubMed  Google Scholar 

  2. Hadziselimovic, F. & Herzog, B. The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet 6, 1156–1157 (2001).

    Google Scholar 

  3. Skakkebaek, N. E. Possible carcinoma-in-situ of the testis. Lancet 9, 516–517 (1972).

    Google Scholar 

  4. Skakkebaek, N. E., Berthelsen, J. G., Giwercman, A. & Müller, J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int. J. Androl. 10, 19–28 (1987).

    CAS  PubMed  Google Scholar 

  5. Van der Zwan, Y. G., Biermann, K., Wolffenbuttel, K. P., Cools, M. & Looijenga, L. H. Gonadal maldevelopment as risk factor for germ cell cancer: towards a clinical decision model. Eur. Urol. 67, 692–701 (2015).

    PubMed  Google Scholar 

  6. McCann-Crosby, B. State of the art review in gonadal dysgenesis: challenges in diagnosis and management. Int. J. Pediatr. Endocrinol. 2014, 4 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Howell, S. & Shalet, S. Gonadal damage from chemotherapy and radiotherapy. Endocrinol. Metab. Clin. North Am. 27, 927–943 (1998).

    CAS  PubMed  Google Scholar 

  8. Wallace, W. H., Anderson, R. A. & Irvine, D. S. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 6, 209–218 (2005).

    PubMed  Google Scholar 

  9. Keros, V. et al. Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum. Reprod. 22, 1384–1395 (2007).

    CAS  PubMed  Google Scholar 

  10. Wyns, C., Curaba, M., Vanabelle, B., Van Langendonckt, A. & Donnez, J. Options for fertility preservation in prepubertal boys. Hum. Reprod. Update 16, 312–328 (2010).

    PubMed  Google Scholar 

  11. Kvist, K. et al. Cryopreservation of intact testicular tissue from boys with cryptorchidism. Hum. Reprod. 21, 484–491 (2006).

    CAS  PubMed  Google Scholar 

  12. Gordon, D. L., Barr, A. B., Herrigel, J. E. & Paulsen, C. A. Testicular biopsy in man. I. Effect upon sperm concentration. Fertil. Steril. 16, 522–530 (1965).

    CAS  PubMed  Google Scholar 

  13. Rowley, M. J., O'Keefe, K. B. & Heller, C. G. Decreases in sperm concentration due to testicular biopsy procedure in man. J. Urol. 101, 347–349 (1969).

    CAS  PubMed  Google Scholar 

  14. Schoor, R. A., Elhanbly, S., Niederberger, C. S. & Ross, L. S. The role of testicular biopsy in the modern management of male infertility. J. Urol. 167, 197–200 (2002).

    PubMed  Google Scholar 

  15. Dieckmann, K. P., Heinemann, V., Frey, U. & Pichlmeier, U. How harmful is contralateral testicular biopsy? — An analysis of serial imaging studies and a prospective evaluation of surgical complications. Eur. Urol. 48, 662–672 (2005).

    PubMed  Google Scholar 

  16. Nistal, M., Paniagua, R., González-Peramato, P. & Reyes-Múgica, M. Perspectives in pediatric pathology, chapter 3. Testicular development from birth to puberty: systematic evaluation of the prepubertal testis. Pediatr. Dev. Pathol. 18, 173–186 (2015).

    PubMed  Google Scholar 

  17. Giwercman, A., Berthelsen, J. G., Müller, J., von der Maase, H. & Skakkebaek, N. E. Screening for carcinoma-in-situ of the testis. Int. J. Androl. 10, 173–180 (1987).

    CAS  PubMed  Google Scholar 

  18. Giwercman, A., Grindsted, J., Hansen, B., Jensen, O. M. & Skakkebaek, N. E. Testicular cancer risk in boys with maldescended testis: a cohort study. J. Urol. 138, 1214–1216 (1987).

    CAS  PubMed  Google Scholar 

  19. van Casteren, N. J. et al. Heterogeneous distribution of ITGCNU in an adult testis: consequences for biopsy-based diagnosis. Int. J. Surg. Pathol. 16, 21–24 (2008).

    PubMed  Google Scholar 

  20. Dieckmann, K. P., Kulejewski, M., Pichlmeier, U. & Loy, V. Diagnosis of contralateral testicular epithelial neoplasia (tin) in patients with testicular germ cell cancer: systematic two-site biopsies are more sensitive than a single random biopsy. Eur. Urol. 51, 175–183 (2006).

    PubMed  Google Scholar 

  21. Møller, H., Cortes, D., Engholm, G. & Thorup, J. Risk of testicular cancer with cryptorchidism and with testicular biopsy: cohort study. BMJ 12, 729 (1998).

    Google Scholar 

  22. Patel, R. P. et al. Testicular microlithiasis and antisperm antibodies following testicular biopsy in boys with cryptorchidism. J. Urol. 174, 2008–2010 (2005).

    PubMed  Google Scholar 

  23. Oosterhuis, J. W. & Looijenga, L. H. Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer 5, 210–222 (2005).

    CAS  PubMed  Google Scholar 

  24. Mandelbaum, S. L., Diamond, M. P. & DeCherney, A. H. The impact of antisperm antibodies on human infertility. J. Urol. 138, 1–8 (1987).

    CAS  PubMed  Google Scholar 

  25. Mininberg, D. T., Chen, M. E. & Witkin, S. S. Antisperm antibodies in cryptorchid boys. Eur. J. Pediatr. 152, 23–24 (1993).

    Google Scholar 

  26. Cortes, D., Brandt, B. & Thorup, J. Direct mixed antiglobulin reaction (MAR) test in semen at follow-up after testicular biopsy of maldescended testes operated in puberty. Z. Kinderchir. 45, 227–228 (1990).

    CAS  PubMed  Google Scholar 

  27. Cheng, C. Y. & Mruk, D. D. Cell junction dynamics in the testis: Sertoli–germ cell interactions and male contraceptive development. Physiol. Rev. 82, 825–874 (2002).

    CAS  PubMed  Google Scholar 

  28. Furuya, S., Kumamoto, Y. & Sugiyama, S. Fine structure and development of Sertoli junctions in human testis. Arch. Androl. 1, 211–219 (1978).

    CAS  PubMed  Google Scholar 

  29. Cheng, C. Y. & Mruk, D. D. An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit. Rev. Biochem. Mol. Biol. 44, 245–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Looijenga, L. H. et al. Gonadal tumours and DSD. Best Pract. Res. Clin. Endocrinol. Metab. 24, 291–310 (2010).

    PubMed  Google Scholar 

  31. Huyghe, E., Matsuda, T. & Thonneau, P. Increasing incidence of testicular cancer worldwide: a review. J. Urol. 170, 5–11 (2003).

    PubMed  Google Scholar 

  32. Krausz, C. & Looijenga, L. H. Genetic aspects of testicular germ cell tumors. Cell Cycle 15, 3519–3524 (2008).

    Google Scholar 

  33. Li, Y. et al. The Y-encoded TSPY protein: a significant marker potentially plays a role in the pathogenesis of testicular germ cell tumors. Hum. Pathol. 38, 1470–1481 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Oram, S. W., Liu, X. X., Lee, T. L., Chan, W. Y. & Lau, Y. F. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer 9, 154 (2006).

    Google Scholar 

  35. Hersmus, R. et al. FOXL2 and SOX9 as parameters of female and male gonadal differentiation in patients with various forms of disorders of sex development (DSD). J. Pathol. 215, 31–38 (2008).

    CAS  PubMed  Google Scholar 

  36. Scully, R. E. Gonadoblastoma. A review of 74 cases. Cancer 25, 1340–1356 (1970).

    CAS  PubMed  Google Scholar 

  37. Hoei-Hansen, C. E., Rajpert- De Meyts, E., Daugaard, G. & Skakkebaek, N. E. Carcinoma in situ testis, the progenitor of testicular germ cell tumours: a clinical review. Ann. Oncol. 16, 863–868 (2005).

    CAS  PubMed  Google Scholar 

  38. Rørth, M. et al. Carcinoma in situ in the testis. Scand. J. Urol. Nephrol. 34 (Suppl.), 166–186 (2000).

    Google Scholar 

  39. Dieckmann, K. P. & Skakkebaek, N. E. Carcinoma in situ of the testis: review of biological and clinical features. Int. J. Cancer. 83, 815–822 (1999).

    CAS  PubMed  Google Scholar 

  40. Karellas, M. E., Damjanov, I. & Holzbeierlein, J. M. ITGCN of the testis, contralateral testicular biopsy and bilateral testicular cancer. Urol. Clin. North Am. 34, 119–125 (2007).

    PubMed  Google Scholar 

  41. Kersemaekers, A. M. et al. Identification of germ cells at risk for neoplastic transformation in gonadoblastoma: an immunohistochemical study for Oct-3/4 and TSPY. Hum. Pathol. 36, 512–521 (2001).

    Google Scholar 

  42. Looijenga, L. H. et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 1, 2244–2250 (2003).

    Google Scholar 

  43. De Jong, J. & Looijenga, L. H. Stem cell marker Oct-3/4 in tumor biology and germ cell tumor diagnostics: history and future. Crit. Rev. Oncog. 12, 171–203 (2006).

    PubMed  Google Scholar 

  44. Cheng, L. et al. OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J. Pathol. 211, 1–9 (2007).

    CAS  PubMed  Google Scholar 

  45. Page, D. C. Hypothesis: a Y-chromosomal gene causes gonadoblastoma in dysgenetic gonads. Development 101, 151–155 (1987).

    PubMed  Google Scholar 

  46. Li, Y., Vilain, E., Conte, F., Rajpert De Meyts, E. & Lau, Y. F. Testis-specific protein Y-encoded gene is expressed in early and late stages of gonadoblastoma and testicular carcinoma in situ. Urol. Oncol. 25, 141–146 (2007).

    CAS  PubMed  Google Scholar 

  47. Kvist, K., Clasen-Linde, E., Cortes, D., Petersen, B. L. & Thorup, J. Adult immunohistochemical markers fail to detect intratubular germ cell neoplasia in prepubertal boys with cryptorchidism. J. Urol. 191, 1084–1089 (2014).

    CAS  PubMed  Google Scholar 

  48. Hersmus, R. et al. Delayed recognition of disorders of sex development (DSD): a missed opportunity for early diagnosis of malignant germ cell tumors. Int. J. Endocrinol. 2012, 671209 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. Rajpert-De Meyts, E. et al. The emerging phenotype of the testicular carcinoma in situ germ cell. APMIS 111, 267–278 (2003).

    PubMed  Google Scholar 

  50. Jørgensen, N., Giwercman, A., Müller, J. & Skakkebaek, N. E. Immunohistochemical markers of carcinoma in situ of the testis also expressed in normal infantile germ cells. Histopathology 22, 373–378 (1993).

    PubMed  Google Scholar 

  51. Emerson, R. E. & Cheng, L. Premalignancy of the testis and paratestis. Pathology 45, 264–272 (2013).

    PubMed  Google Scholar 

  52. Al-Hussain, T., Bakshi, N. & Akhtar, M. Intratubular germ cell neoplasia of the testis: a brief review. Adv. Anat. Pathol. 22, 202–212 (2015).

    CAS  PubMed  Google Scholar 

  53. Hoei-Hansen, C. E. et al. Current approaches for detection of carcinoma in situ testis. Int. J. Androl. 30, 398–404 (2007).

    PubMed  Google Scholar 

  54. Biermann, K. et al. Diagnostic value of markers M2A, Oct-3/4, AP-2gamma, PLAP and c-KIT in the detection of extragonadal seminomas. Histopathology 49, 290–297 (2006).

    CAS  PubMed  Google Scholar 

  55. Stoop, H. et al. Stem cell factor as a novel diagnostic marker for early malignant germ cells. J. Pathol. 216, 43–54 (2008).

    CAS  PubMed  Google Scholar 

  56. Looijenga, L. H. et al. Stem cell factor receptor (c-KIT) codon 816 mutations predict development of bilateral testicular germ-cell tumors. Cancer Res. 15, 7674–7678 (2003).

    Google Scholar 

  57. Hersmus, R. et al. New insights into type II germ cell tumor pathogenesis based on the studies of patients with various forms of disorders of sex development (DSD). Mol. Cell Endocrinol. 291, 1–10 (2008).

    CAS  PubMed  Google Scholar 

  58. Pettersson, A., Richiardi, L., Nordenskjold, A., Kaijser, M. & Akre, O. Age at surgery for undescended testis and risk of testicular cancer. N. Engl. J. Med. 356, 1835–1841 (2007).

    CAS  PubMed  Google Scholar 

  59. Martinerie, L., Morel, Y. & Gay, C. L. Impaired puberty, fertility, and final stature in 45,X/46,XY mixed gonadal dysgenetic patients raised as boys. Eur. J. Endocrinol. 166, 687–694 (2012).

    CAS  PubMed  Google Scholar 

  60. Gourlay, W. A., Johnson, H. W. & Pantzar, J. T. Gonadal tumors in disorders of sexual differentiation. Urology 43, 537–540 (1994).

    CAS  PubMed  Google Scholar 

  61. Cools, M., Drop, S. L. S., Wolffenbuttel, K. P., Oosterhuis, J. W. & Looijenga, L. H. Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr. Rev. 27, 468–484 (2006).

    CAS  PubMed  Google Scholar 

  62. Hughes, I. A. et al. Consensus statement on management of intersex disorders. Arch. Dis. Child. 91, 554–563 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Alvarez, N., Lee, T. & Solorzano, C. Complete androgen insensitivity syndrome: the role of the endocrine surgeon. Am. Surg. 71, 241–243 (2005).

    PubMed  Google Scholar 

  64. Purves, J. T., Miles-Thomas, J., Migeon, C. & Gearhart, J. P. Complete androgen insensitivity: the role of the surgeon. J. Urol. 180, 1716–1719 (2008).

    PubMed  Google Scholar 

  65. Ahmed, S. F. et al. Phenotypic features, androgen receptor binding, and mutational analysis in 278 clinical cases reported as androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 85, 658–665 (2000).

    CAS  PubMed  Google Scholar 

  66. Soule, S. et al. Osteopenia as a feature of the androgen insensitivity syndrome. Clin. Endocrinol. (Oxf.) 43, 671–675 (1995).

    CAS  Google Scholar 

  67. Cheikhelard, A. et al. Long-term followup and comparison between genotype and phenotype in 29 cases of complete androgen insensitivity syndrom. J. Urol. 180, 1496–1501 (2008).

    PubMed  Google Scholar 

  68. Deans, R. et al. Timing of gonadectomy in adult women with complete androgen insensitivity syndrome (CAIS): patient preferences and clinical evidence. Clin. Endocrinol. 76, 894–898 (2012).

    Google Scholar 

  69. Hannema, S. E. et al. Testicular development in the complete androgen insensitivity syndrome. J. Pathol. 208, 518–527 (2006).

    CAS  PubMed  Google Scholar 

  70. Hughes, I. A. et al. Androgen insensitivity syndrome. Lancet 380, 419–428 (2012).

    Google Scholar 

  71. Kaprova-Pleskacova, J. et al. Complete androgen insensitivity syndrome: factors influencing gonadal histology including germ cell pathology. Mod. Pathol. 27, 721–730 (2014).

    CAS  PubMed  Google Scholar 

  72. Barthold, J. S. & Gonzales, R. The epidemiology of congenital cryptorchidism, testicular ascent and orchidopexy. J. Urol. 170, 2396–2401 (2003).

    PubMed  Google Scholar 

  73. Cortes, D., Thorup, J. M. & Visfeldt, J. Cryptorchidism: aspects of fertility and neoplasms. A study including data of 1335 consecutive boys who underwent testicular biopsy simultaneously with surgery for cryptorchidism. Horm. Res. 55, 21–27 (2001).

    CAS  PubMed  Google Scholar 

  74. Skakkebaek, N. E. Testicular dysgenesis syndrome: new epidemiological evidence. Int. J. Androl. 27, 189–191 (2004).

    PubMed  Google Scholar 

  75. Oosterhuis, J. W. et al. A pathologist's view on the testis biopsy. Int. J. Androl. 34, 14–20 (2011).

    Google Scholar 

  76. Cooper, M. L. et al. Testicular microlithiasis in children and associated testicular cancer. Radiology 270, 857–863 (2014).

    PubMed  Google Scholar 

  77. Cortes, D., Thorup, J. & Visfeldt, J. Multinucleated spermatogonia in cryptorchid boys: a possible association with an increased risk of testicular malignancy later in life? APMIS 111, 25–30 (2003).

    PubMed  Google Scholar 

  78. DeCastro, B. J., Peterson, A. C. & Costabile, R. A. A 5-year followup study of asymptomatic men with testicular microlithiasis. J. Urol. 179, 1420–1423 (2008).

    PubMed  Google Scholar 

  79. Costabile, R. A. How worrisome is testicular microlithiasis? Curr. Opin. Urol. 17, 419–423 (2007).

    PubMed  Google Scholar 

  80. Peterson, A. C., Bauman, J. M., Light, D. E., McMann, L. P. & Costabile, R. A. The prevalence of testicular microlithiasis in an asymptomatic population of men 18 to 35 years old. J. Urol. 166, 2061–2064 (2001).

    CAS  PubMed  Google Scholar 

  81. Suominen, J. S., Jawaid, W. B. & Losty, P. D. Testicular microlithiasis and associated testicular malignancies in childhood: a systematic review. Pediatr. Blood Cancer 62, 385–388 (2015).

    PubMed  Google Scholar 

  82. Ritzén, E. M. et al. Nordic consensus on treatment of undescended testes. Acta Paediatr. 96, 638–643 (2007).

    PubMed  Google Scholar 

  83. Chan, E., Wayne, C. & Nasr, A. Ideal timing of orchiopexy: a systematic review. Pediatr. Surg. Int. 30, 87–97 (2014).

    PubMed  Google Scholar 

  84. Hadziselimovic, F. & Hoecht, B. Testicular histology related to fertility outcome and postpubertal hormone status in cryptorchidism. Klin. Padiatr. 220, 302–307 (2008).

    CAS  PubMed  Google Scholar 

  85. Kraft, K. H., Canning, D. A., Snyder, H. M. 3rd, Kolon, T. F. Undescended testis histology correlation with adult hormone levels and semen analysis. J. Urol. 188 (Suppl.), 1429–1435 (2012).

    CAS  PubMed  Google Scholar 

  86. Lee, P. A., O'Leary, L. A. & Songer, N. J. Paternity after unilateral cryptorchidism: a controlled study. Pediatrics 98, 676–679 (1996).

    CAS  PubMed  Google Scholar 

  87. Nistal, M., Paniagua, R., Riestra, M. L., Reyes-Múgica, M. & Cajaiba, M. M. Bilateral prepubertal testicular biopsies predict significance of cryptorchidism-associated mixed testicular atrophy, and allow assessment of fertility. Am. J. Surg. Pathol. 31, 1269–1276 (2007).

    PubMed  Google Scholar 

  88. Thorup, J., Petersen, B. L., Kvist, K. & Cortes, D. Bilateral undescended testes classified according to preoperative and postoperative status of gonadotropins and inhibin B in relation to testicular histopathology at bilateral orchiopexy in infant boys. J. Urol. 188, 1436–1442 (2012).

    CAS  PubMed  Google Scholar 

  89. Hadziselimovic, F., Hadziselimovic, N. O., Demougin, P., Krey, G. & Oakeley, E. Piwi-pathway alteration induces LINE-1 transposon derepression and infertility development in cryptorchidism. Sex. Dev. 9, 98–104 (2015).

    CAS  PubMed  Google Scholar 

  90. Cortes, D., Thorup, J. M. & Beck, B. L. Quantitative histology of germ cells in the undescended testes of human foetuses, neonates and infants. J. Urol. 154, 1188–1192 (1995).

    CAS  PubMed  Google Scholar 

  91. Kenney, L. B. et al. Male reproductive health after childhood, adolescent, and young adult cancers: a report from the Children's Oncology Group. J. Clin. Oncol. 20, 3408–3416 (2012).

    Google Scholar 

  92. Tournaye, H. et al. Preserving the reproductive potential of men and boys with cancer: current concepts and future prospects. Hum. Reprod. Update 10, 525–532 (2004).

    PubMed  Google Scholar 

  93. Wallace, W. H., Smith, A. G., Kelsey, T. W., Edgar, A. E. & Anderson, R. A. Fertility preservation for girls and young women with cancer: population-based validation of criteria for ovarian tissue cryopreservation. Lancet Oncol. 15, 1129–1136 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Hou, M., Andersson, M., Eksborg, S., Soder, O. & Jahnukainen, K. Xenotransplantation of testicular tissue into nude mice can be used for detecting leukemic cell contamination. Hum. Reprod. 22, 1899–1906 (2007).

    PubMed  Google Scholar 

  95. Nagano, M., Patrizio, P. & Brinster, R. L. Long-term survival of human spermatogonial stem cells in mouse testes. Fertil. Steril. 78, 1225–1233 (2002).

    PubMed  Google Scholar 

  96. Oatley, J. M., de Avila, D. M., Mc Lean, D. J., Griswold, M. D. & Reeves, J. J. Transplantation of bovine germinal cells into mouse testes. J. Anim. Sci. 80, 1925–1931 (2002).

    CAS  PubMed  Google Scholar 

  97. Choi, Y. J. et al. Long-term follow-up of porcine male germ cells transplanted into mouse testes. Zygote 15, 325–335 (2007).

    PubMed  Google Scholar 

  98. Zimmermann, S. et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol. Endocrinol. 13, 681–691 (1999).

    CAS  PubMed  Google Scholar 

  99. Hutson, J. M., Li, R., Southwell, B. R., Newgreen, D. & Cousinery, M. Regulation of testicular descent. Pediatr. Surg. Int. 31, 317–325 (2015).

    PubMed  Google Scholar 

  100. Huston, J. M. A biphasic model for the hormonal control of testicular descent. Lancet 2, 419–421 (1985).

    Google Scholar 

  101. Müller, J. & Skakkebaek, N. E. Quantification of germ cells and seminiferous tubules by stereological examination of testicles from 50 boys who suffered from sudden death. Int. J. Androl. 6, 143–156 (1983).

    PubMed  Google Scholar 

  102. Bidlingmaier, F. & Hilscher, W. in Reproductive Biology and Medicine (eds Holstein, A. F. et al.) 34–43 (Diesbach Verlag, 1989).

    Google Scholar 

  103. Cassorla, F. G. et al. Testicular volume during early infancy. J. Pediatr. 99, 742–743 (1981).

    CAS  PubMed  Google Scholar 

  104. Guibourdenche, J. et al. Anti-Müllerian hormone levels in serum from human foetuses and children: pattern and clinical interest. Mol. Cell. Endocrinol. 211, 55–63 (2003).

    CAS  PubMed  Google Scholar 

  105. De la balze, F. A. et al. Puberal maturation of the normal human testis. A histologic study. J. Clin. Endocrinol. Metab. 20, 266–285 (1960).

    CAS  PubMed  Google Scholar 

  106. Hiort, O. Androgens and puberty. Best Pract. Res. Clin. Endocrinol. Metab. 16, 31–41 (2002).

    CAS  PubMed  Google Scholar 

  107. Diamond, D. A. et al. Comparative assessment of pediatric testicular volume: orchidometer versus ultrasound. J. Urol. 164, 1111–1114 (2000).

    CAS  PubMed  Google Scholar 

  108. Hadziselimovic´, F. Cryptorchidism. Ultrastructure of normal and cryptorchid testis development. Adv. Anat. Embryol. Cell Biol. 53, 3–71 (1977).

    PubMed  Google Scholar 

  109. Fawcett, D. W., Leak, L. V. & Heidger, P. M. Electron microscopic observations on the structural components of the blood–testis barrier. J. Reprod. Fertil. Suppl. 10, 105–122 (1970).

    CAS  PubMed  Google Scholar 

  110. Hayashi, H. & Harrison, R. G. The development of the interstitial tissue of the human testis. Fertil. Steril. 22, 351–355 (1971).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank D. MacGregor for his support in the redaction of this manuscript regarding his expertise in testicular histology. A.F. acknowledges the support of grants from the French Society of Pediatric Surgery (SFCP) and the Association for the Development of Biological and Medical Research (ADEREM).

Author information

Authors and Affiliations

Authors

Contributions

A.F. researched data for the article, A.F., J.T., J.H. and Y.H. provided a substantial contribution to the discussion of content, A.F. and Y.H. wrote the article, and all authors were involved in the review/editing of the manuscript before submission.

Corresponding author

Correspondence to Alice Faure.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faure, A., Bouty, A., O'Brien, M. et al. Testicular biopsy in prepubertal boys: a worthwhile minor surgical procedure?. Nat Rev Urol 13, 141–150 (2016). https://doi.org/10.1038/nrurol.2015.312

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing