Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Type I interferon in rheumatic diseases

Key Points

  • Type I interferon has a pathogenic role in many rheumatic conditions, including systemic lupus erythematosus, Sjögren syndrome, myositis and systemic sclerosis.

  • Many genetic risk factors for rheumatic diseases lie within the type I interferon pathway as gain-of-function polymorphisms, and both polygenic and monogenic influences have been described.

  • Stratifying patients by type I interferon activity levels will inform us about both disease pathogenesis and treatment response in rheumatic diseases.

  • A number of therapeutics that target type I interferons, the type I interferon receptor, or the type I interferon pathway are currently in various stages of development.

Abstract

The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including systemic lupus erythematosus, Sjögren syndrome, myositis, systemic sclerosis, and rheumatoid arthritis. In normal immune responses, type I interferons have a critical role in the defence against viruses, yet in many rheumatic diseases, large subgroups of patients demonstrate persistent activation of the type I interferon pathway. Genetic variations in type I interferon-related genes are risk factors for some rheumatic diseases, and can explain some of the heterogeneity in type I interferon responses seen between patients within a given disease. Inappropriate activation of the immune response via Toll-like receptors and other nucleic acid sensors also contributes to the dysregulation of the type I interferon pathway in a number of rheumatic diseases. Theoretically, differences in type I interferon activity between patients might predict response to immune-based therapies, as has been demonstrated for rheumatoid arthritis. A number of type I interferon and type I interferon pathway blocking therapies are currently in clinical trials, the results of which are promising thus far. This Review provides an overview of the many ways in which the type I interferon system affects rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major pathways of induction of type I interferon production in different cell lineages.

Similar content being viewed by others

References

  1. Rice, G. et al. Clinical and molecular phenotype of Aicardi-Goutieres syndrome. Am. J. Hum. Genet. 81, 713–725 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    CAS  PubMed  Google Scholar 

  3. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Crow, M. K. & Wohlgemuth, J. Microarray analysis of gene expression in lupus. Arthritis Res. Ther. 5, 279–287 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kariuki, S. N. et al. Genetic analysis of the pathogenic molecular sub-phenotype interferon-α identifies multiple novel loci involved in systemic lupus erythematosus. Genes Immun. 16, 15–23 (2015).

    CAS  PubMed  Google Scholar 

  6. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

    CAS  PubMed  Google Scholar 

  7. Pestka, S., Krause, C. D. & Walter, M. R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 202, 8–32 (2004).

    CAS  PubMed  Google Scholar 

  8. Pestka, S. Purification and cloning of interferon α. Curr. Top. Microbiol. Immunol. 316, 23–37 (2007).

    CAS  PubMed  Google Scholar 

  9. Ito, T., Kanzler, H., Duramad, O., Cao, W. & Liu, Y. J. Specialization, kinetics, and repertoire of type I interferon responses by human plasmacytoid predendritic cells. Blood 107, 2423–2431 (2006).

    CAS  PubMed  Google Scholar 

  10. Prakash, A., Smith, E., Lee, C. K. & Levy, D. E. Tissue-specific positive feedback requirements for production of type I interferon following virus infection. J. Biol. Chem. 280, 18651–18657 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Severa, M. et al. Sensitization to TLR7 agonist in IFN-β-preactivated dendritic cells. J. Immunol. 178, 6208–6216 (2007).

    CAS  PubMed  Google Scholar 

  12. Nir, U., Maroteaux, L., Cohen, B. & Mory, I. Priming affects the transcription rate of human interferon-β1 gene. J. Biol. Chem. 260, 14242–14247 (1985).

    CAS  PubMed  Google Scholar 

  13. Weiss, G. et al. MyD88 drives the IFN-β response to Lactobacillus acidophilus in dendritic cells through a mechanism involving IRF1, IRF3, and IRF7. J. Immunol. 189, 2860–2868 (2012).

    CAS  PubMed  Google Scholar 

  14. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131–137 (2006).

    CAS  PubMed  Google Scholar 

  15. Oliveira, L., Sinicato, N. A., Postal, M., Appenzeller, S. & Niewold, T. B. Dysregulation of antiviral helicase pathways in systemic lupus erythematosus. Front. Genet. 5, 418 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Crow, Y. J. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    CAS  PubMed  Google Scholar 

  17. Mavragani, C. P. et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol. 68, 2686–2696 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Y. et al. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection. Immunity 46, 393–404 (2017).

    CAS  PubMed  Google Scholar 

  19. Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535–584 (2008).

    CAS  PubMed  Google Scholar 

  20. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  Google Scholar 

  21. Shrivastav, M. & Niewold, T. B. Nucleic acid sensors and type I interferon production in systemic lupus erythematosus. Front. Immunol. 4, 319 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Blasius, A. L. & Beutler, B. Intracellular toll-like receptors. Immunity 32, 305–315 (2010).

    CAS  PubMed  Google Scholar 

  23. Jensen, M. A. & Niewold, T. B. Interferon regulatory factors: critical mediators of human lupus. Transl Res. 165, 283–295 (2015).

    CAS  PubMed  Google Scholar 

  24. Yarilina, A., Park-Min, K. H., Antoniv, T., Hu, X. & Ivashkiv, L. B. TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat. Immunol. 9, 378–387 (2008).

    CAS  PubMed  Google Scholar 

  25. Venkatesh, D. et al. Endothelial TNF receptor 2 induces IRF1 transcription factor-dependent interferon-β autocrine signaling to promote monocyte recruitment. Immunity 38, 1025–1037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Takayanagi, H. et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β. Nature 416, 744–749 (2002).

    CAS  PubMed  Google Scholar 

  27. Xiong, Q., Zhang, L., Ge, W. & Tang, P. The roles of interferons in osteoclasts and osteoclastogenesis. Joint Bone Spine 83, 276–281 (2016).

    CAS  PubMed  Google Scholar 

  28. de Weerd, N. A. et al. Structural basis of a unique interferon-beta signaling axis mediated via the receptor IFNAR1. Nat. Immunol. 14, 901–907 (2013).

    CAS  PubMed  Google Scholar 

  29. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hervas-Stubbs, S. et al. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res. 17, 2619–2627 (2011).

    CAS  PubMed  Google Scholar 

  31. Sharma, S. et al. Widely divergent transcriptional patterns between SLE patients of different ancestral backgrounds in sorted immune cell populations. J. Autoimmun. 60, 51–58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Goh, K. C., Haque, S. J. & Williams, B. R. p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons. EMBO J. 18, 5601–5608 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaur, S. et al. Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc. Natl Acad. Sci. USA 105, 4808–4813 (2008).

    CAS  PubMed  Google Scholar 

  34. Fink, K. et al. IFNβ/TNFα synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH oxidase-mediated airway antiviral response. Cell Res. 23, 673–690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Higgs, B. W. et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis. 70, 2029–2036 (2011).

    CAS  PubMed  Google Scholar 

  36. Karonitsch, T. et al. Activation of the interferon-gamma signaling pathway in systemic lupus erythematosus peripheral blood mononuclear cells. Arthritis Rheum. 60, 1463–1471 (2009).

    PubMed  Google Scholar 

  37. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 1548–1550 (2016).

    CAS  PubMed  Google Scholar 

  38. Becker, A. M. et al. SLE peripheral blood B cell, T cell and myeloid cell transcriptomes display unique profiles and each subset contributes to the interferon signature. PLoS ONE 8, e67003 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Weckerle, C. E. et al. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 63, 1044–1053 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jabs, W. J., Hennig, C., Zawatzky, R. & Kirchner, H. Failure to detect antiviral activity in serum and plasma of healthy individuals displaying high activity in ELISA for IFN-α and IFN-β. J. Interferon Cytokine Res. 19, 463–469 (1999).

    CAS  PubMed  Google Scholar 

  41. Wilson, D. R. et al. The Simoa HD-I analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J. Lab. Autom. 21, 533–547 (2016).

    CAS  PubMed  Google Scholar 

  42. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Meyer, S. et al. AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell 166, 582–595 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ronnblom, L. E., Alm, G. V. & Oberg, K. E. Possible induction of systemic lupus erythematosus by interferon-α treatment in a patient with a malignant carcinoid tumour. J. Intern. Med. 227, 207–210 (1990).

    CAS  PubMed  Google Scholar 

  45. Niewold, T. B. & Swedler, W. I. Systemic lupus erythematosus arising during interferon-α therapy for cryoglobulinemic vasculitis associated with hepatitis C. Clin. Rheumatol. 24, 178–181 (2005).

    PubMed  Google Scholar 

  46. Niewold, T. B., Hua, J., Lehman, T. J., Harley, J. B. & Crow, M. K. High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 8, 492–502 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kariuki, S. N. et al. Trait-stratified genome-wide association study identifies novel and diverse genetic associations with serologic and cytokine phenotypes in systemic lupus erythematosus. Arthritis Res. Ther. 12, R151 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. Munroe, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 75, 2014–2021 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ghodke-Puranik, Y. & Niewold, T. B. Genetics of the type I interferon pathway in systemic lupus erythematosus. Int. J. Clin. Rheumtol. https://doi.org/10.2217/ijr.13.58 (2013).

    CAS  Google Scholar 

  50. Kariuki, S. N. et al. Cutting edge: Autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-α in lupus patients in vivo. J. Immunol. 182, 34–38 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Robinson, T. et al. Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-α and serologic autoimmunity in lupus patients. J. Immunol. 187, 1298–1303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Barnes, B. J., Moore, P. A. & Pitha, P. M. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon α genes. J. Biol. Chem. 276, 23382–23390 (2001).

    CAS  PubMed  Google Scholar 

  53. Yasuda, K. et al. Interferon regulatory factor-5 deficiency ameliorates disease severity in the MRL/lpr mouse model of lupus in the absence of a mutation in DOCK2. PLoS ONE 9, e103478 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Graham, R. R. et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl Acad. Sci. USA 104, 6758–6763 (2007).

    CAS  PubMed  Google Scholar 

  55. Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lessard, C. J. et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren's syndrome. Nat. Genet. 45, 1284–1292 (2013).

    CAS  PubMed  Google Scholar 

  57. Radstake, T. R. et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet. 42, 426–429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dieguez-Gonzalez, R. et al. Association of interferon regulatory factor 5 haplotypes, similar to that found in systemic lupus erythematosus, in a large subgroup of patients with rheumatoid arthritis. Arthritis Rheum. 58, 1264–1274 (2008).

    CAS  PubMed  Google Scholar 

  59. Nordang, G. B. et al. Interferon regulatory factor 5 gene polymorphism confers risk to several rheumatic diseases and correlates with expression of alternative thymic transcripts. Rheumatology (Oxford) 51, 619–626 (2012).

    CAS  Google Scholar 

  60. Niewold, T. B. et al. Association of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus patients. Arthritis Rheum. 58, 2481–2487 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Niewold, T. B. et al. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Ann. Rheum. Dis. 71, 463–468 (2012).

    CAS  PubMed  Google Scholar 

  62. Cherian, T. S. et al. Brief Report: IRF5 systemic lupus erythematosus risk haplotype is associated with asymptomatic serologic autoimmunity and progression to clinical autoimmunity in mothers of children with neonatal lupus. Arthritis Rheum. 64, 3383–3387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fu, Q. et al. Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis Rheum. 63, 749–754 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lessard, C. J. et al. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am. J. Hum. Genet. 90, 648–660 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Salloum, R. et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-α activity in lupus patients. Arthritis Rheum. 62, 553–561 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chrabot, B. S. et al. Genetic variation near IRF8 is associated with serologic and cytokine profiles in systemic lupus erythematosus and multiple sclerosis. Genes Immun. 14, 471–478 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pothlichet, J. et al. A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients. EMBO Mol. Med. 3, 142–152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kariuki, S. N., Crow, M. K. & Niewold, T. B. The PTPN22 C1858T polymorphism is associated with skewing of cytokine profiles toward high interferon-α activity and low tumor necrosis factor α levels in patients with lupus. Arthritis Rheum. 58, 2818–2823 (2008).

    PubMed  PubMed Central  Google Scholar 

  69. Wang, Y. et al. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type I interferon-dependent immunity. Immunity 39, 111–122 (2013).

    CAS  PubMed  Google Scholar 

  70. Gestermann, N. et al. STAT4 is a confirmed genetic risk factor for Sjögren's syndrome and could be involved in type I interferon pathway signaling. Genes Immun. 11, 432–438 (2010).

    CAS  PubMed  Google Scholar 

  71. Dieude, P. et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 60, 2472–2479 (2009).

    CAS  PubMed  Google Scholar 

  72. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zervou, M. I., Goulielmos, G. N., Castro-Giner, F., Tosca, A. D. & Krueger-Krasagakis, S. STAT4 gene polymorphism is associated with psoriasis in the genetically homogeneous population of Crete, Greece. Hum. Immunol. 70, 738–741 (2009).

    CAS  PubMed  Google Scholar 

  74. Liang, Y. L. et al. Association of STAT4 rs7574865 polymorphism with autoimmune diseases: a meta-analysis. Mol. Biol. Rep. 39, 8873–8882 (2012).

    CAS  PubMed  Google Scholar 

  75. Hebert, H. L. et al. Identification of loci associated with late-onset psoriasis using dense genotyping of immune-related regions. Br. J. Dermatol. 172, 933–939 (2015).

    CAS  PubMed  Google Scholar 

  76. Lee, Y. H. et al. The PTPN22 C1858T functional polymorphism and autoimmune diseases — a meta-analysis. Rheumatology (Oxford) 46, 49–56 (2007).

    CAS  Google Scholar 

  77. Carlton, V. E. et al. PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am. J. Hum. Genet. 77, 567–581 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mok, A. et al. Genome-wide profiling identifies associations between lupus nephritis and differential methylation of genes regulating tissue hypoxia and type I interferon responses. Lupus Sci. Med. 3, e000183 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. Harley, I. T. W. et al. The role of genetic variation near interferon-κ in systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 706825 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Stannard, J. N. et al. Lupus skin is primed for IL-6 inflammatory responses through a keratinocyte-mediated autocrine type I interferon loop. J. Invest. Dermatol. 137, 115–122 (2017).

    CAS  PubMed  Google Scholar 

  81. Ko, K., Koldobskaya, Y., Rosenzweig, E. & Niewold, T. B. Activation of the interferon pathway is dependent upon autoantibodies in African-American SLE patients, but not in European-American SLE patients. Frontiers Immunol. 4, 309 (2013).

    Google Scholar 

  82. Hagberg, N. et al. IFN-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes is promoted by NK cells via MIP-1β and LFA-1. J. Immunol. 186, 5085–5094 (2011).

    CAS  PubMed  Google Scholar 

  83. Ghodke-Puranik, Y. et al. Lupus-associated functional polymorphism in PNP causes cell cycle abnormalities and interferon pathway activation in human immune cells. Arthritis Rheumatol. 69, 2328–2337 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Landolt-Marticorena, C. et al. Lack of association between the interferon-α signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann. Rheum. Dis. 68, 1440–1446 (2009).

    CAS  PubMed  Google Scholar 

  85. Petri, M. et al. Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus. Lupus 18, 980–989 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bauer, J. W. et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum. 60, 3098–3107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hjelmervik, T. O., Petersen, K., Jonassen, I., Jonsson, R. & Bolstad, A. I. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren's syndrome patients from healthy control subjects. Arthritis Rheum. 52, 1534–1544 (2005).

    CAS  PubMed  Google Scholar 

  88. Emamian, E. S. et al. Peripheral blood gene expression profiling in Sjögren's syndrome. Genes Immun. 10, 285–296 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gottenberg, J. E. et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren's syndrome. Proc. Natl Acad. Sci. USA 103, 2770–2775 (2006).

    CAS  PubMed  Google Scholar 

  90. Niewold, T. B., Rivera, T. L., Buyon, J. P. & Crow, M. K. Serum type I interferon activity is dependent on maternal diagnosis in anti-SSA/Ro-positive mothers of children with neonatal lupus. Arthritis Rheum. 58, 541–546 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Brkic, Z. et al. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren's syndrome and association with disease activity and BAFF gene expression. Ann. Rheum. Dis. 72, 728–735 (2013).

    CAS  PubMed  Google Scholar 

  92. Li, H. et al. Identification of a Sjögren's syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. PLoS Genet. 13, e1006820 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Vlachogiannis, N. I. et al. Increased frequency of the PTPN22W* variant in primary Sjögren's syndrome: association with low type I IFN scores. Clin. Immunol. 173, 157–160 (2016).

    CAS  PubMed  Google Scholar 

  94. Maria, N. I. et al. Contrasting expression pattern of RNA-sensing receptors TLR7, RIG-I and MDA5 in interferon-positive and interferon-negative patients with primary Sjögren's syndrome. Ann. Rheum. Dis. 76, 721–730 (2017).

    CAS  PubMed  Google Scholar 

  95. Nezos, A. et al. Type I and II interferon signatures in Sjögren's syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjögren's related lymphomagenesis. J. Autoimmun. 63, 47–58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Niewold, T. B., Kariuki, S. N., Morgan, G. A., Shrestha, S. & Pachman, L. M. Elevated serum interferon-α activity in juvenile dermatomyositis: associations with disease activity at diagnosis and after thirty-six months of therapy. Arthritis Rheum. 60, 1815–1824 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. O'Connor, K. A., Abbott, K. A., Sabin, B., Kuroda, M. & Pachman, L. M. MxA gene expression in juvenile dermatomyositis peripheral blood mononuclear cells: association with muscle involvement. Clin. Immunol. 120, 319–325 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shrestha, S. et al. Lesional and non lesional skin from untreated juvenile dermatomyositis (JDM) displays increased mast cells and mature plasmacytoid dendritic cells. Arthritis Rheum. 62, 2813–2822 (2010).

    PubMed  PubMed Central  Google Scholar 

  99. Reed, A. M. et al. Changes in novel biomarkers of disease activity in juvenile and adult dermatomyositis are sensitive biomarkers of disease course. Arthritis Rheum. 64, 4078–4086 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Greenberg, S. A. et al. Relationship between disease activity and type I interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis. Genes Immun. 13, 207–213 (2012).

    CAS  PubMed  Google Scholar 

  101. Niewold, T. B., Kariuki, S. N., Morgan, G. A., Shrestha, S. & Pachman, L. M. Gene-gene-sex interaction in cytokine gene polymorphisms revealed by serum interferon α phenotype in juvenile dermatomyositis. J. Pediatr. 157, 653–657 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Niewold, T. B., Wu, S. C., Smith, M., Morgan, G. A. & Pachman, L. M. Familial aggregation of autoimmune disease in juvenile dermatomyositis. Pediatrics 127, e1239–e1246 (2011).

    PubMed  PubMed Central  Google Scholar 

  103. Balboni, I. et al. Detection of anti-Ro, La, Smith and RNP autoantibodies by autoantigen microarray analysis and interferon-α induction in juvenile dermatomyositis. Arthritis Rheum. 2424–2429 (2013).

  104. Dastmalchi, M. et al. A high incidence of disease flares in an open pilot study of infliximab in patients with refractory inflammatory myopathies. Ann. Rheum. Dis. 67, 1670–1677 (2008).

    CAS  PubMed  Google Scholar 

  105. Mavragani, C. P. et al. Augmented interferon-α pathway activation in patients with Sjögren's syndrome treated with etanercept. Arthritis Rheum. 56, 3995–4004 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Liao, A. P. et al. Interferon β is associated with type I interferon-inducible gene expression in dermatomyositis. Ann. Rheum. Dis. 70, 831–836 (2011).

    CAS  PubMed  Google Scholar 

  107. Tournadre, A., Lenief, V., Eljaafari, A. & Miossec, P. Immature muscle precursors are a source of interferon-β in myositis: role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum. 64, 533–541 (2012).

    CAS  PubMed  Google Scholar 

  108. Li, L. et al. Role of Toll-like receptors and retinoic acid inducible gene I in endogenous production of type I interferon in dermatomyositis. J. Neuroimmunol. 285, 161–168 (2015).

    CAS  PubMed  Google Scholar 

  109. Assassi, S. et al. Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum. 62, 589–598 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Brkic, Z. et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann. Rheum. Dis. 75, 1567–1573 (2016).

    CAS  PubMed  Google Scholar 

  111. York, M. R. et al. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis Rheum. 56, 1010–1020 (2007).

    CAS  PubMed  Google Scholar 

  112. Christmann, R. B. et al. Association of Interferon- and transforming growth factor β-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheumatol. 66, 714–725 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wuttge, D. M. et al. Increased serum type I interferon activity in early systemic sclerosis patients is associated with antibodies against Sjögren's syndrome antigens and nuclear ribonucleoprotein antigens. Scand. J. Rheumatol. 42, 235–240 (2013).

    CAS  PubMed  Google Scholar 

  114. Mahoney, J. M. et al. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms. PLoS Comput. Biol. 11, e1004005 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. Gorlova, O. et al. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet. 7, e1002178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Barizzone, N. et al. Rare variants in the TREX1 gene and susceptibility to autoimmune diseases. Biomed. Res. Int. 2013, 471703 (2013).

    PubMed  PubMed Central  Google Scholar 

  117. van Bon, L. et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 370, 433–443 (2014).

    CAS  PubMed  Google Scholar 

  118. Aidoudi, S., Bujakowska, K., Kieffer, N. & Bikfalvi, A. The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis. PLoS ONE 3, e2657 (2008).

    PubMed  PubMed Central  Google Scholar 

  119. Romagnani, P. et al. CXCR3-mediated opposite effects of CXCL10 and CXCL4 on T(H)1 or T-H cytokine production. J. Allergy Clin. Immunol. 116, 1372–1379 (2005).

    CAS  PubMed  Google Scholar 

  120. Liu, C. Y. et al. Platelet factor 4 differentially modulates CD4(+)CD25(+) (regulatory) versus CD4(+)CD25(-) (nonregulatory) T cells. J. Immunol. 174, 2680–2686 (2005).

    CAS  PubMed  Google Scholar 

  121. Stevens, W., Vancheeswaran, R. & Black, C. M. Alpha interferon-2a (Roferon-A) in the treatment of diffuse cutaneous systemic sclerosis: a pilot study. Br. J. Rheumatol 31, 683–689 (1992).

    CAS  PubMed  Google Scholar 

  122. Black, C. M. et al. Interferon-α does not improve outcome at one year in patients with diffuse cutaneous scleroderma: results of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 42, 299–305 (1999).

    CAS  PubMed  Google Scholar 

  123. Lubbers, J. et al. The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann. Rheum. Dis. 72, 776–780 (2013).

    PubMed  Google Scholar 

  124. Hua, J., Kirou, K., Lee, C. & Crow, M. K. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 54, 1906–1916 (2006).

    CAS  PubMed  Google Scholar 

  125. Han, T. U. et al. Association of an activity-enhancing variant of IRAK1 and an MECP2-IRAK1 haplotype with increased susceptibility to rheumatoid arthritis. Arthritis Rheum. 65, 590–598 (2013).

    CAS  PubMed  Google Scholar 

  126. Orozco, G. et al. Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 52, 219–224 (2005).

    CAS  PubMed  Google Scholar 

  127. Lande, R. et al. Characterization and recruitment of plasmacytoid dendritic cells in synovial fluid and tissue of patients with chronic inflammatory arthritis. J. Immunol. 173, 2815–2824 (2004).

    CAS  PubMed  Google Scholar 

  128. Cavanagh, L. L. et al. Rheumatoid arthritis synovium contains plasmacytoid dendritic cells. Arthritis Res. Ther. 7, R230–240 (2005).

    Google Scholar 

  129. van Holten, J., Smeets, T. J., Blankert, P. & Tak, P. P. Expression of interferon β in synovial tissue from patients with rheumatoid arthritis: comparison with patients with osteoarthritis and reactive arthritis. Ann. Rheum. Dis. 64, 1780–1782 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Roelofs, M. F. et al. Type I interferons might form the link between Toll-like receptor (TLR) 3/7 and TLR4-mediated synovial inflammation in rheumatoid arthritis (RA). Ann. Rheum. Dis. 68, 1486–1493 (2009).

    CAS  PubMed  Google Scholar 

  131. Coclet-Ninin, J., Dayer, J. M. & Burger, D. Interferon-β not only inhibits interleukin-1β and tumor necrosis factor-α but stimulates interleukin-1 receptor antagonist production in human peripheral blood mononuclear cells. Eur. Cytokine Netw 8, 345–349 (1997).

    CAS  PubMed  Google Scholar 

  132. Palmer, G. et al. Interferon β stimulates interleukin 1 receptor antagonist production in human articular chondrocytes and synovial fibroblasts. Ann. Rheum. Dis. 63, 43–49 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Triantaphyllopoulos, K. A., Williams, R. O., Tailor, H. & Chernajovsky, Y. Amelioration of collagen-induced arthritis and suppression of interferon-γ, interleukin-12, and tumor necrosis factor alpha production by interferon-β gene therapy. Arthritis Rheum. 42, 90–99 (1999).

    CAS  PubMed  Google Scholar 

  134. van Holten, J. et al. Treatment with recombinant interferon-β reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res. Ther. 6, R239–R249 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. van Holten, J. et al. A multicentre, randomised, double blind, placebo controlled phase II study of subcutaneous interferon β-1a in the treatment of patients with active rheumatoid arthritis. Ann. Rheum. Dis. 64, 64–69 (2005).

    CAS  PubMed  Google Scholar 

  136. Raterman, H. G. et al. The interferon type I signature towards prediction of non-response to rituximab in rheumatoid arthritis patients. Arthritis Res. Ther. 14, R95 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Mavragani, C. P., La, D. T., Stohl, W. & Crow, M. K. Association of the response to tumor necrosis factor antagonists with plasma type I interferon activity and interferon-β/α ratios in rheumatoid arthritis patients: a post hoc analysis of a predominantly Hispanic cohort. Arthritis Rheum. 62, 392–401 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wampler Muskardin, T. et al. Increased pretreatment serum IFN-β/α ratio predicts non-response to tumour necrosis factor α inhibition in rheumatoid arthritis. Ann. Rheum. Dis. 75, 1757–1762 (2016).

    PubMed  Google Scholar 

  139. de Jong, T. D. et al. Physiological evidence for diversification of IFNα- and IFNβ-mediated response programs in different autoimmune diseases. Arthritis Res. Ther. 18, 49 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Coclet-Ninin, J., Dayer, J. M. & Burger, D. Interferon-β not only inhibits interleukin-1 β and tumor necrosis factor-α but stimulates interleukin-1 receptor antagonist production in human peripheral blood mononuclear cells. Eur. Cytokine Netw. 8, 345–349 (1997).

    CAS  PubMed  Google Scholar 

  141. Kim, H., Sanchez, G. A. & Goldbach-Mansky, R. Insights from Mendelian interferonopathies: comparison of CANDLE, SAVI with AGS, monogenic lupus. J. Mol. Med. 94, 1111–1127 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Paludan, S. R. & Bowie, A. G. Immune sensing of DNA. Immunity 38, 870–880 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Rice, G. et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am. J. Hum. Genet. 80, 811–815 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    CAS  PubMed  Google Scholar 

  146. Rice, G. I., Rodero, M. P. & Crow, Y. J. Human disease phenotypes associated with mutations in TREX1. J. Clin. Immunol. 35, 235–243 (2015).

    CAS  PubMed  Google Scholar 

  147. Jang, M. A. et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am. J. Hum. Genet. 96, 266–274 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Torrelo, A. CANDLE syndrome as a paradigm of proteasome-related autoinflammation. Front. Immunol. 8, 927 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Brehm, A. et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 125, 4196–4211 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Warner, J. D. et al. STING-associated vasculopathy develops independently of IRF3 in mice. J. Exp. Med. https://doi.org/10.1084/jem.20171351 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Merrill, J. T. et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon alpha monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann. Rheum. Dis. 70, 1905–1913 (2011).

    CAS  PubMed  Google Scholar 

  153. McBride, J. M. et al. Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum. 64, 3666–3676 (2012).

    CAS  PubMed  Google Scholar 

  154. Petri, M. et al. Sifalimumab, a human anti-interferon-α monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 65, 1011–1021 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Niewold, T. B. Connective tissue diseases: Targeting type I interferon in systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 377–378 (2016).

    CAS  PubMed  Google Scholar 

  156. Khamashta, M. et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 75, 1909–1916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kalunian, K. C. et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE). Ann. Rheum. Dis. 75, 196–202 (2016).

    PubMed  Google Scholar 

  158. Lauwerys, B. R. et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid. Arthritis Rheum. 65, 447–456 (2013).

    CAS  PubMed  Google Scholar 

  159. Higgs, B. W. et al. A phase Ib clinical trial evaluating sifalimumab, an anti-IFN-α monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Ann. Rheum. Dis. 73, 256–262 (2014).

    CAS  PubMed  Google Scholar 

  160. Peng, L., Oganesyan, V., Wu, H., Dall'Acqua, W. F. & Damschroder, M. M. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody. mAbs 7, 428–439 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Furie, R. et al. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 69, 376–386 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Guo, X. et al. Suppression of T cell activation and collagen accumulation by an anti-IFNAR1 mAb, anifrolumab, in adult patients with systemic sclerosis. J. Invest. Dermatol. 135, 2402–2409 (2015).

    CAS  PubMed  Google Scholar 

  163. Bialas, A. R. et al. Microglia-dependent synapse loss in type I interferon-mediated lupus. Nature 546, 539–543 (2017).

    CAS  PubMed  Google Scholar 

  164. Sacre, K., Criswell, L. A. & McCune, J. M. Hydroxychloroquine is associated with impaired interferon-α and tumor necrosis factor-α production by plasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Res. Ther. 14, R155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Alarcon, G. S. et al. Effect of hydroxychloroquine on the survival of patients with systemic lupus erythematosus: data from LUMINA, a multiethnic US cohort (LUMINA L). Ann. Rheum. Dis. 66, 1168–1172 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bruce, I. N. et al. Factors associated with damage accrual in patients with systemic lupus erythematosus: results from the Systemic Lupus International Collaborating Clinics (SLICC) Inception Cohort. Ann. Rheum. Dis. 74, 1706–1713 (2015).

    CAS  PubMed  Google Scholar 

  167. Rempenault, C. et al. Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2017-211836 (2017).

    PubMed  Google Scholar 

  168. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03085940 (2017).

  169. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02595346 (2016).

  170. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01379573 (2017).

  171. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03030118 (2018).

  172. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02603146 (2017).

  173. Postal, M., Sinicato, N. A., Appenzeller, S. & Niewold, T. B. Drugs in early clinical development for systemic lupus erythematosus. Expert Opin. Invest. Drugs 25, 573–583 (2016).

    CAS  Google Scholar 

  174. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03241108 (2017).

  175. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02592434 (2018).

  176. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01500551 (2018).

  177. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03000439 (2018).

  178. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01976364 (2018).

  179. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01882439 (2017).

  180. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01877668 (2017).

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03159936 (2017).

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02535689 (2018).

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03288324 (2018).

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03002649 (2017).

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02265705 (2017).

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01721044 (2018).

  187. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01885078 (2018).

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01721057 (2017).

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01710358 (2017).

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01711359 (2017).

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01724580 (2017).

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02065700 (2017).

  193. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01894516 (2016).

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01888874 (2016).

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01668641 (2013).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01384422 (2012).

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02885181 (2017).

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03320876 (2018).

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03101670 (2018).

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03285711 (2018).

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02996500 (2018).

  202. Liang, Y. et al. A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nat. Immunol. 18, 152–160 (2017).

    CAS  PubMed  Google Scholar 

  203. Canosi, U. et al. A highly precise reporter gene bioassay for type I interferon. J. Immunol. Methods 199, 69–76 (1996).

    CAS  PubMed  Google Scholar 

  204. Khabar, K. S. et al. Expressed gene clusters associated with cellular sensitivity and resistance towards anti-viral and anti-proliferative actions of interferon. J. Mol. Biol. 342, 833–846 (2004).

    CAS  PubMed  Google Scholar 

  205. Niewold, T. B., Clark, D. N., Salloum, R. & Poole, B. D. Interferon α in systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 948364 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of T.L.W.M. is supported by grants from the Central Society for Clinical and Translational Research. The work of T.B.N. is supported by grants from the NIH (AR060861, AR057781and AR065964), the Rheumatology Research Foundation, CureJM Foundation, the Myositis Association, the Lupus Research Alliance and the Colton Center for Autoimmunity.

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the article, provided substantial contributions to discussions of its content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Timothy B. Niewold.

Ethics declarations

Competing interests

T.B.N. declares that he has received research grants from EMD Serono and Janssen. T.L.W.N declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muskardin, T., Niewold, T. Type I interferon in rheumatic diseases. Nat Rev Rheumatol 14, 214–228 (2018). https://doi.org/10.1038/nrrheum.2018.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2018.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing