Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging concepts of type I interferons in SLE pathogenesis and therapy

Abstract

Type I interferons have been suspected for decades to have a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). Evidence has now overturned several long-held assumptions about how type I interferons are regulated and cause pathological conditions, providing a new view of SLE pathogenesis that resolves longstanding clinical dilemmas. This evidence includes data on interferons in relation to genetic predisposition and epigenetic regulation. Importantly, data are now available on the role of interferons in the early phases of the disease and the importance of non-haematopoietic cellular sources of type I interferons, such as keratinocytes, renal tubular cells, glial cells and synovial stromal cells, as well as local responses to type I interferons within these tissues. These local effects are found not only in inflamed target organs in established SLE, but also in histologically normal skin during asymptomatic preclinical phases, suggesting a role in disease initiation. In terms of clinical application, evidence relating to biomarkers to characterize the type I interferon system is complex, and, notably, interferon-blocking therapies are now licensed for the treatment of SLE. Collectively, the available data enable us to propose a model of disease pathogenesis that invokes the unique value of interferon-targeted therapies. Accordingly, future approaches in SLE involving disease reclassification and preventative strategies in preclinical phases should be investigated.

Key points

  • Type I interferon pathway variants are prominent in genetic predisposition to systemic lupus erythematosus (SLE), and epigenetic regulation affects classic interferon-stimulated genes and genes less directly related to interferon signalling.

  • Contrary to previous assumptions, plasmacytoid dendritic cells lose their immunogenic functions in SLE, including type I interferon production and antigen presentation.

  • Non-haematopoietic cells within organs affected by SLE (especially the skin) produce type I interferons, express interferon-stimulated genes, and have roles in the initiation of SLE and in established SLE.

  • Both the dysfunction of plasmacytoid dendritic cells and the non-haematopoietic production of type I interferons is seen in all anti-nuclear antibody-positive individuals, regardless of whether progression to organ inflammation later occurs.

  • Diverse biomarkers (each with advantages and disadvantages) can characterize type I interferon pathway activation, including evaluation of interferon proteins and several effects downstream of the type I interferon receptor.

  • Several therapies targeting the type I interferon pathway are in development (including the now licensed anifrolumab), and might have specific clinical properties relating to the model of SLE proposed herein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A model of SLE pathogenesis based on the roles of type I interferons during phases of disease progression.
Fig. 2: Type I interferon production and response in organs affected by systemic lupus erythematosus.
Fig. 3: Biomarkers for type I interferon pathway activation.
Fig. 4: Therapeutic targets in the type I interferon pathway.

Similar content being viewed by others

References

  1. Psarras, A., Emery, P. & Vital, E. M. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology 56, 1662–1675 (2017).

    CAS  PubMed  Google Scholar 

  2. Ronnblom, L. & Alm, G. V. An etiopathogenic role for the type I IFN system in SLE. Trends Immunol. 22, 427–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Walling, H. W. & Sontheimer, R. D. Cutaneous lupus erythematosus: issues in diagnosis and treatment. Am. J. Clin. Dermatol. 10, 365–381 (2009).

    Article  PubMed  Google Scholar 

  4. Vital, E. M. et al. B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum. 63, 3038–3047 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Vital, E. M. et al. Brief report: responses to rituximab suggest B cell-independent inflammation in cutaneous systemic lupus erythematosus. Arthritis Rheumatol. 67, 1586–1591 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Furie, R. A. et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol. 1, e208–e219 (2019).

    Article  Google Scholar 

  7. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Eriksson, C. et al. Autoantibodies predate the onset of systemic lupus erythematosus in northern Sweden. Arthritis Res. Ther. 13, R30 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wandstrat, A. E. et al. Autoantibody profiling to identify individuals at risk for systemic lupus erythematosus. J. Autoimmun. 27, 153–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Niewold, T. B., Hua, J., Lehman, T. J., Harley, J. B. & Crow, M. K. High serum IFN-alpha activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 8, 492–502 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niewold, T. B. et al. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Ann. Rheum. Dis. 71, 463–468 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Niewold, T. B. et al. Association of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus patients. Arthritis Rheum. 58, 2481–2487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. El-Sherbiny, Y. M. et al. A novel two-score system for interferon status segregates autoimmune diseases and correlates with clinical features. Sci. Rep. 8, 5793 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu, R. et al. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J. Autoimmun. 74, 182–193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Langkilde, H., Voss, A., Heegaard, N. & Laustrup, H. Autoantibodies persist in relatives to systemic lupus erythematosus patients during 12 years follow-up. Lupus 26, 723–728 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Munroe, M. E. et al. Pathways of impending disease flare in African-American systemic lupus erythematosus patients. J. Autoimmun. 78, 70–78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Munroe, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 75, 2014–2021 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Md Yusof, M. Y. et al. Prediction of autoimmune connective tissue disease in an at-risk cohort: prognostic value of a novel two-score system for interferon status. Ann. Rheum. Dis. 77, 1432–1439 (2018).

    Article  PubMed  Google Scholar 

  20. Deng, Y. & Tsao, B. P. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat. Rev. Rheumatol. 6, 683–692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y. F. et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat. Commun. 12, 772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Graham, R. R. et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat. Genet. 38, 550–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Feng, D. et al. Genetic variants and disease-associated factors contribute to enhanced interferon regulatory factor 5 expression in blood cells of patients with systemic lupus erythematosus. Arthritis Rheum. 62, 562–573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN). et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  Google Scholar 

  25. Salloum, R. et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients. Arthritis Rheum. 62, 553–561 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robinson, T. et al. Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-alpha and serologic autoimmunity in lupus patients. J. Immunol. 187, 1298–1303 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kariuki, S. N. et al. Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J. Immunol. 182, 34–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Harley, I. T. et al. The role of genetic variation near interferon-kappa in systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 706825 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Panousis, N. I. et al. Combined genetic and transcriptome analysis of patients with SLE: distinct, targetable signatures for susceptibility and severity. Ann. Rheum. Dis. 78, 1079–1089 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Barrat, F. J., Crow, M. K. & Ivashkiv, L. B. Interferon target-gene expression and epigenomic signatures in health and disease. Nat. Immunol. 20, 1574–1583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamada, R. et al. Interferon stimulation creates chromatin marks and establishes transcriptional memory. Proc. Natl Acad. Sci. USA 115, E9162–E9171 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park, S. H. et al. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat. Immunol. 18, 1104–1116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Care, M. A. et al. Network analysis identifies proinflammatory plasma cell polarization for secretion of ISG15 in human autoimmunity. J. Immunol. 197, 1447–1459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eloranta, M. L., Alm, G. V. & Ronnblom, L. Disease mechanisms in rheumatology-tools and pathways: plasmacytoid dendritic cells and their role in autoimmune rheumatic diseases. Arthritis Rheum. 65, 853–863 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Vallin, H., Perers, A., Alm, G. V. & Ronnblom, L. Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-α inducer in systemic lupus erythematosus. J. Immunol. 163, 6306–6313 (1999).

    CAS  PubMed  Google Scholar 

  37. Vallin, H., Blomberg, S., Alm, G. V., Cederblad, B. & Ronnblom, L. Patients with systemic lupus erythematosus (SLE) have a circulating inducer of interferon-alpha (IFN-α) production acting on leucocytes resembling immature dendritic cells. Clin. Exp. Immunol. 115, 196–202 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lovgren, T., Eloranta, M. L., Bave, U., Alm, G. V. & Ronnblom, L. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    Article  PubMed  Google Scholar 

  39. Blomberg, S., Eloranta, M. L., Magnusson, M., Alm, G. V. & Ronnblom, L. Expression of the markers BDCA-2 and BDCA-4 and production of interferon-α by plasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Rheum. 48, 2524–2532 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Swiecki, M. & Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15, 471–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, W. & Bover, L. Signaling and ligand interaction of ILT7: receptor-mediated regulatory mechanisms for plasmacytoid dendritic cells. Immunol. Rev. 234, 163–176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Psarras, A. et al. TNF-α regulates human plasmacytoid dendritic cells by suppressing IFN-α production and enhancing T cell activation. J. Immunol. 206, 785–796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Macal, M. et al. Self-renewal and Toll-like receptor signaling sustain exhausted plasmacytoid dendritic cells during chronic viral infection. Immunity 48, 730–744.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moisini, I. et al. The Yaa locus and IFN-α fine-tune germinal center B cell selection in murine systemic lupus erythematosus. J. Immunol. 189, 4305–4312 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Dai, C. et al. Interferon alpha on NZM2328.Lc1R27: enhancing autoimmunity and immune complex-mediated glomerulonephritis without end stage renal failure. Clin. Immunol. 154, 66–71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sriram, U. et al. Myeloid dendritic cells from B6.NZM Sle1/Sle2/Sle3 lupus-prone mice express an IFN signature that precedes disease onset. J. Immunol. 189, 80–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Hadj-Slimane, R., Chelbi-Alix, M. K., Tovey, M. G. & Bobe, P. An essential role for IFN-α in the overexpression of Fas ligand on MRL/lpr lymphocytes and on their spontaneous Fas-mediated cytotoxic potential. J. Interferon Cytokine Res. 24, 717–728 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Zhou, Z. et al. Phenotypic and functional alterations of pDCs in lupus-prone mice. Sci. Rep. 6, 20373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liao, X. et al. Cutting edge: plasmacytoid dendritic cells in late-stage lupus mice defective in producing IFN-α. J. Immunol. 195, 4578–4582 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodero, M. P. et al. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J. Exp. Med. 214, 1547–1555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Psarras, A. et al. Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity. Nat. Commun. 11, 6149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iwamoto, T. et al. High systemic type I interferon activity is associated with active class III/IV lupus nephritis. J. Rheumatol. 49, 388–397 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Denny, M. F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. 184, 3284–3297 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Skopelja-Gardner, S. et al. Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc. Natl Acad. Sci. USA 118, e2019097118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Skopelja-Gardner, S. et al. The early local and systemic type I interferon responses to ultraviolet B light exposure are cGAS dependent. Sci. Rep. 10, 7908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Caielli, S. et al. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell 184, 4464–4479.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. LaFleur, D. W. et al. Interferon-κ, a novel type I interferon expressed in human keratinocytes. J. Biol. Chem. 276, 39765–39771 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Sarkar, M. K. et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann. Rheum. Dis. 77, 1653–1664 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Stannard, J. N. et al. Lupus skin is primed for IL-6 inflammatory responses through a keratinocyte-mediated autocrine type I interferon loop. J. Invest. Dermatol. 137, 115–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Tsoi, L. C. et al. Hypersensitive IFN responses in lupus keratinocytes reveal key mechanistic determinants in cutaneous lupus. J. Immunol. 202, 2121–2130 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Shalbaf, M. et al. Plucked hair follicles from patients with chronic discoid lupus erythematosus show a disease-specific molecular signature. Lupus Sci. Med. 6, e000328 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alase, A. A. et al. IFNλ stimulates MxA production in human dermal fibroblasts via a MAPK-dependent STAT1-independent mechanism. J. Invest. Dermatol. 135, 2935–2943 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Billi, A. C. et al. Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Sci. Transl. Med. 14, eabn2263 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Castellano, G. et al. Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res. Ther. 17, 72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Benigni, A. et al. Involvement of renal tubular Toll-like receptor 9 in the development of tubulointerstitial injury in systemic lupus. Arthritis Rheum. 56, 1569–1578 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Papadimitraki, E. D., Tzardi, M., Bertsias, G., Sotsiou, E. & Boumpas, D. T. Glomerular expression of toll-like receptor-9 in lupus nephritis but not in normal kidneys: implications for the amplification of the inflammatory response. Lupus 18, 831–835 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Der, E. et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2, e93009 (2017).

    Article  PubMed Central  Google Scholar 

  71. Chiche, L. et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol. 66, 1583–1595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nzeusseu Toukap, A. et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 56, 1579–1588 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. van Holten, J., Smeets, T. J., Blankert, P. & Tak, P. P. Expression of interferon β in synovial tissue from patients with rheumatoid arthritis: comparison with patients with osteoarthritis and reactive arthritis. Ann. Rheum. Dis. 64, 1780–1782 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  74. van Holten, J. et al. Treatment with recombinant interferon-beta reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res. Ther. 6, R239–R249 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Adriaansen, J. et al. Intraarticular interferon-β gene therapy ameliorates adjuvant arthritis in rats. Hum. Gene Ther. 17, 985–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Treschow, A. P., Teige, I., Nandakumar, K. S., Holmdahl, R. & Issazadeh-Navikas, S. Stromal cells and osteoclasts are responsible for exacerbated collagen-induced arthritis in interferon-β-deficient mice. Arthritis Rheum. 52, 3739–3748 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Mensah, K. A. et al. Mediation of nonerosive arthritis in a mouse model of lupus by interferon-α-stimulated monocyte differentiation that is nonpermissive of osteoclastogenesis. Arthritis Rheum. 62, 1127–1137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mahmoud, K., Zayat, A. & Vital, E. M. Musculoskeletal manifestations of systemic lupus erythmatosus. Curr. Opin. Rheumatol. 29, 486–492 (2017).

    Article  PubMed  Google Scholar 

  79. Merrill, J. T. et al. Anifrolumab effects on rash and arthritis: impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus. Lupus Sci. Med. 5, e000284 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. McGlasson, S., Jury, A., Jackson, A. & Hunt, D. Type I interferon dysregulation and neurological disease. Nat. Rev. Neurol. 11, 515–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Crow, Y. J. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi–Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Rice, G. I. et al. Mutations involved in Aicardi–Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mannion, N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dale, R. C., Tang, S. P., Heckmatt, J. Z. & Tatnall, F. M. Familial systemic lupus erythematosus and congenital infection-like syndrome. Neuropediatrics 31, 155–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. De Laet, C. et al. Phenotypic overlap between infantile systemic lupus erythematosus and Aicardi–Goutieres syndrome. Neuropediatrics 36, 399–402 (2005).

    Article  PubMed  Google Scholar 

  87. Lee-Kirsch, M. A. et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J. Mol. Med. 85, 531–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491, 769–773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Crow, Y. J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi–Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Cuadrado, E. et al. Phenotypic variation in Aicardi–Goutieres syndrome explained by cell-specific IFN-stimulated gene response and cytokine release. J. Immunol. 194, 3623–3633 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. van Heteren, J. T. et al. Astrocytes produce interferon-α and CXCL10, but not IL-6 or CXCL8, in Aicardi–Goutieres syndrome. Glia 56, 568–578 (2008).

    Article  PubMed  Google Scholar 

  93. Hunt, D. et al. Thrombotic microangiopathy associated with interferon beta. N. Engl. J. Med. 370, 1270–1271 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kavanagh, D. et al. Type I interferon causes thrombotic microangiopathy by a dose-dependent toxic effect on the microvasculature. Blood 128, 2824–2833 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Heinze, S. et al. Depressive mood changes and psychiatric symptoms during 12-month low-dose interferon-α treatment in patients with malignant melanoma: results from the multicenter DeCOG trial. J. Immunother. 33, 106–114 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Lebon, P., Lenoir, G. R., Fischer, A. & Lagrue, A. Synthesis of intrathecal interferon in systemic lupus erythematosus with neurological complications. Br. Med. J. (Clin. Res. Ed.) 287, 1165–1167 (1983).

    Article  CAS  Google Scholar 

  97. Shiozawa, S., Kuroki, Y., Kim, M., Hirohata, S. & Ogino, T. Interferon-α in lupus psychosis. Arthritis Rheum. 35, 417–422 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. McGlasson, S., Wiseman, S., Wardlaw, J., Dhaun, N. & Hunt, D. P. J. Neurological disease in lupus: toward a personalized medicine approach. Front. Immunol. 9, 1146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tyden, H. et al. Endothelial dysfunction is associated with activation of the type I interferon system and platelets in patients with systemic lupus erythematosus. RMD Open 3, e000508 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lee, P. Y. et al. Type I interferon as a novel risk factor for endothelial progenitor cell depletion and endothelial dysfunction in systemic lupus erythematosus. Arthritis Rheum. 56, 3759–3769 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Ding, X., Xiang, W. & He, X. IFN-I mediates dysfunction of endothelial progenitor cells in atherosclerosis of systemic lupus erythematosus. Front. Immunol. 11, 581385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wiseman, S. J. et al. Cerebral small vessel disease burden is increased in systemic lupus erythematosus. Stroke 47, 2722–2728 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sibbitt, W. L. Jr. et al. Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus. Semin. Arthritis Rheum. 40, 32–52 (2010).

    Article  PubMed  Google Scholar 

  104. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hua, J., Kirou, K., Lee, C. & Crow, M. K. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 54, 1906–1916 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Mathian, A. et al. Monitoring disease activity in systemic lupus erythematosus with single-molecule array digital enzyme-linked immunosorbent assay quantification of serum interferon-α. Arthritis Rheumatol. 71, 756–765 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Mathian, A. et al. Ultrasensitive serum interferon-α quantification during SLE remission identifies patients at risk for relapse. Ann. Rheum. Dis. 78, 1669–1676 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Higgs, B. W. et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis. 70, 2029–2036 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Kennedy, W. P. et al. Association of the interferon signature metric with serological disease manifestations but not global activity scores in multiple cohorts of patients with SLE. Lupus Sci. Med. 2, e000080 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chatterjee-Kishore, M., Wright, K. L., Ting, J. P. & Stark, G. R. How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J. 19, 4111–4122 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Qiao, Y. et al. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity 39, 454–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Alase, A. et al. Prediction of response to rituximab in SLE using a validated two-score system for interferon. Ann. Rheum. Dis. 78, 763–764 (2019).

    Google Scholar 

  115. Bauer, J. W. et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 3, e491 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Metzemaekers, M., Vanheule, V., Janssens, R., Struyf, S. & Proost, P. Overview of the mechanisms that may contribute to the non-redundant activities of interferon-inducible CXC chemokine receptor 3 ligands. Front. Immunol. 8, 1970 (2017).

    Article  PubMed  Google Scholar 

  117. Saber, M. A., Okasha, H., Khorshed, F. & Samir, S. A novel cell-based in vitro assay for antiviral activity of interferons alpha, beta, and gamma by qPCR of MxA gene expression. Recent. Pat. Biotechnol. 15, 67–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. El-Sherbiny, Y. M. et al. B cell tetherin: a flow cytometric cell-specific assay for response to type I interferon predicts clinical features and flares in systemic lupus erythematosus. Arthritis Rheumatol. 72, 769–779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Biesen, R. et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 58, 1136–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Becker, A. M. et al. SLE peripheral blood B cell, T cell and myeloid cell transcriptomes display unique profiles and each subset contributes to the interferon signature. PLoS One 8, e67003 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Whitney, A. R. et al. Individuality and variation in gene expression patterns in human blood. Proc. Natl Acad. Sci. USA 100, 1896–1901 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fayyaz, A. et al. Haematological manifestations of lupus. Lupus Sci. Med. 2, e000078 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Jacobi, A. M. et al. HLA-DRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 69, 305–308 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Md Yusof, M. Y. et al. Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus. Ann. Rheum. Dis. 76, 1829–1836 (2017).

    Article  PubMed  Google Scholar 

  126. Zhu, H. et al. Whole-genome transcription and DNA methylation analysis of peripheral blood mononuclear cells identified aberrant gene regulation pathways in systemic lupus erythematosus. Arthritis Res. Ther. 18, 162 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Preble, O. T., Black, R. J., Friedman, R. M., Klippel, J. H. & Vilcek, J. Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science 216, 429–431 (1982).

    Article  CAS  PubMed  Google Scholar 

  128. Arvin, A. M. & Miller, J. J. 3rd Acid labile α-interferon in sera and synovial fluids from patients with juvenile arthritis. Arthritis Rheum. 27, 582–585 (1984).

    Article  CAS  PubMed  Google Scholar 

  129. Furie, R. et al. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 69, 376–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Petri, M. et al. Sifalimumab, a human anti-interferon-α monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 65, 1011–1021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kalunian, K. C. et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann. Rheum. Dis. 75, 196–202 (2016).

    Article  PubMed  Google Scholar 

  132. Ducreux, J. et al. Interferon α kinoid induces neutralizing anti-interferon α antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon α kinoid phase I/II study. Rheumatology 55, 1901–1905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lauwerys, B. R. et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid. Arthritis Rheum. 65, 447–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Morehouse, C. et al. Target modulation of a type I interferon (IFN) gene signature with sifalimumab or anifrolumab in systemic lupus erythematosus (SLE) patients in two open label phase 2 Japanese trials. Arthritis Rheumatol. 66, S1–S1402 (2014).

    Google Scholar 

  135. Furie, R. et al. Anifrolumab reduces flare rates in patients with moderate to severe systemic lupus erythematosus. Lupus 30, 1254–1263 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Abdel Galil, S. M., El-Shafey, A. M., Abdul-Maksoud, R. S. & El-Boshy, M. Interferon α gene expression and serum level association with low vitamin D levels in Egyptian female patients with systemic lupus erythematosus. Lupus 27, 199–209 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Zayat, A. S. et al. Defining inflammatory musculoskeletal manifestations in systemic lupus erythematosus. Rheumatology 58, 304–312 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Mahmoud, K. et al. Responsiveness of clinical and ultrasound outcome measures in musculoskeletal systemic lupus erythematosus. Rheumatology 58, 1353–1360 (2019).

    Article  PubMed Central  Google Scholar 

  139. Mahmoud, K. et al. Ultrasound to identify systemic lupus erythematosus patients with musculoskeletal symptoms who respond best to therapy: the US Evaluation For mUsculoskeletal Lupus longitudinal multicentre study. Rheumatology 60, 5194–5204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vanderver, A. et al. Janus kinase inhibition in the Aicardi-Goutieres syndrome. N. Engl. J. Med. 383, 986–989 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wenzel, J. et al. JAK1/2 inhibitor ruxolitinib controls a case of chilblain lupus erythematosus. J. Invest. Dermatol. 136, 1281–1283 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Hasni, S. A. et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun. 12, 3391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wallace, D. J. et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 392, 222–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Dorner, T. et al. Baricitinib-associated changes in global gene expression during a 24-week phase II clinical systemic lupus erythematosus trial implicates a mechanism of action through multiple immune-related pathways. Lupus Sci. Med. 7, e000424 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT03845517ClinicalTrials.gov (2022).

  146. Oon, S. et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight 1, e86131 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hartmann, S. et al. A clinical population pharmacokinetic/pharmacodynamic model for BIIB059, a monoclonal antibody for the treatment of systemic and cutaneous lupus erythematosus. J. Pharmacokinet. Pharmacodyn. 47, 255–266 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Werth, V. et al. OP0193 BIIB059, A humanized monoclonal antibody targeting BDCA2 on plasmacytoid dendritic cells (PDC), shows dose-related efficacy in the phase 2 LILAC study in patients (PTS) with active cutaneous lupus erythematosus (CLE). Ann. Rheum. Dis. 79, 120 (2020).

    Article  Google Scholar 

  149. Furie, R. et al. Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J. Clin. Invest. 129, 1359–1371 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hamilton, J. A., Hsu, H. C. & Mountz, J. D. Role of production of type I interferons by B cells in the mechanisms and pathogenesis of systemic lupus erythematosus. Discov. Med. 25, 21–29 (2018).

    PubMed  Google Scholar 

  151. Patel, J., Maddukuri, S., Li, Y., Bax, C. & Werth, V. P. Highly multiplexed mass cytometry identifies the immunophenotype in the skin of dermatomyositis. J. Invest. Dermatol. 141, 2151–2160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Testa, U., Pelosi, E. & Frankel, A. CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark. Res. 2, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Li, Y. et al. Monocyte surface expression of Fcγ receptor RI (CD64), a biomarker reflecting type-I interferon levels in systemic lupus erythematosus. Arthritis Res. Ther. 12, R90 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kawasaki, M. et al. Possible role of the JAK/STAT pathways in the regulation of T cell-interferon related genes in systemic lupus erythematosus. Lupus 20, 1231–1239 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Lambers, W. M., Westra, J., Bootsma, H. & de Leeuw, K. Hydroxychloroquine suppresses interferon-inducible genes and B cell activating factor in patients with incomplete and new-onset systemic lupus erythematosus. J. Rheumatol. 48, 847–851 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Khamashta, M. et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 75, 1909–1916 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Houssiau, F. A. et al. IFN-α kinoid in systemic lupus erythematosus: results from a phase IIb, randomised, placebo-controlled study. Ann. Rheum. Dis. 79, 347–355 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Edward M. Vital.

Ethics declarations

Competing interests

E.M.V. has received research grants from AstraZeneca and Sandoz and honoraria from AstraZeneca, Aurinia, GSK, Modus, Lilly and Roche. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Psarras, A., Wittmann, M. & Vital, E.M. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol 18, 575–590 (2022). https://doi.org/10.1038/s41584-022-00826-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00826-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing