Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

siRNA-based therapeutic approaches for rheumatic diseases

Abstract

RNA interference (RNAi) is one of the most exciting and important discoveries of the past few decades. Small interfering RNAs (siRNAs) can silence gene activity and be used to interfere with pathophysiological processes. Substantial research has focused on introducing 'drug-like' properties—stability, selectivity and potency—to RNAi molecules, and clinical trials have been initiated. Despite initial success, the current challenge that remains is to develop optimized vehicles that avoid off-target effects whilst efficiently delivering the therapeutic siRNA to specific cell types. As for many other diseases, siRNA-based therapy is emerging as a promising approach for the treatment of rheumatic disorders. Although the pathogenesis of rheumatic diseases is complex, identification of candidate genes able to influence either inflammation or structural damage has been successful. Here, we will discuss advances in the field and potential applications of siRNA therapeutics in clinical trials for rheumatic conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies that interfere with endogenous miRNA biogenesis for in vivo siRNA-based therapy.
Figure 2: Ideal strategy for optimal siRNA-based treatment in rheumatic diseases.

Similar content being viewed by others

References

  1. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mello, G. C. & Conte, D. Revealing the world of RNA interference. Nature 431, 338–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. De Paula, D., Bentley, M. V. & Mahato, R. I. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA 13, 431–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, C. X. et al. Delivery of RNA interference. Cell Cycle 5, 2103–2109 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Jackson, A. L. & Linsley, P. S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 9, 57–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. McBride, J. L. et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc. Natl Acad. Sci. USA 105, 5868–5873 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sioud, M. RNA interference and innate immunity. Adv. Drug Deliv. Rev. 59, 153–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Schiffelers, R. M., Xu, J., Storm, G., Woodle, M. C. & Scaria, P. V. Effects of treatment with small interfering RNA on joint inflammation in mice with collagen-induced arthritis. Arthritis Rheum. 52, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Inoue, A. et al. Electro-transfer of small interfering RNA ameliorated arthritis in rats. Biochem. Biophys. Res. Commun. 336, 903–908 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Inoue, A. et al. Comparison of anti-rheumatic effects of local RNAi-based therapy in collagen induced arthritis rats using various cytokine genes as molecular targets. Mod. Rheumatol. 19, 125–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Nakagawa, S. et al. Small interfering RNA targeting CD81 ameliorated arthritis in rats. Biochem. Biophys. Res. Commun. 388, 467–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Takanashi, M. et al. Therapeutic silencing of an endogenous gene by siRNA cream in an arthritis model mouse. Gene Ther. 16, 982–989 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, G. et al. Role of osteopontin in amplification and perpetuation of rheumatoid synovitis. J. Clin. Invest. 115, 1060–1067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boumans, M. J. et al. Safety, tolerability, pharmacokinetics, pharmacodynamics and efficacy of the monoclonal antibody ASK8007 blocking osteopontin in patients with rheumatoid arthritis: a randomised, placebo controlled, proof-of-concept study. Ann. Rheum. Dis. 71, 180–185 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Mountziaris, P. M., Sing, D. C., Mikos, A. G. & Kramer, P. R. Intra-articular microparticles for drug delivery to the TMJ. J. Dent. Res. 89, 1039–1044 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Présumey, J. et al. PLGA microspheres encapsulating siRNA anti-TNFα: efficient RNAi-mediated treatment of arthritic joints. Eur. J. Pharm. Biopharm. http://dx.doi.org/10.1016/j.ejpb.2012.07.021.

  18. Lai Kwan Lam, Q., King Hung Ko, O., Zheng, B. J. & Lu, L. Local BAFF gene silencing suppresses TH17-cell generation and ameliorates autoimmune arthritis. Proc. Natl Acad. Sci. USA 105, 14993–14998 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang, C. R. et al. Intra-articular lentivirus-mediated delivery of galectin-3 shRNA and galectin-1 gene ameliorates collagen-induced arthritis. Gene Ther. 17, 1225–1233 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Khoury, M. et al. Adeno-associated virus type 5-mediated intraarticular administration of tumor necrosis factor small interfering RNA improves collagen-induced arthritis. Arthritis Rheum. 62, 765–770 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Fabre, S. & Apparailly, F. Gene therapy for rheumatoid arthritis: current status and future prospects. BioDrugs 25, 381–391 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Andrianaivo, F., Lecocq, M., Wattiaux-De Coninck, S., Wattiaux, R. & Jadot, M. Hydrodynamics-based transfection of the liver: entrance into hepatocytes of DNA that causes expression takes place very early after injection. J. Gene Med. 6, 877–883 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Brunetti-Pierri, N. et al. Increased hepatic transduction with reduced systemic dissemination and proinflammatory cytokines following hydrodynamic injection of helper-dependent adenoviral vectors. Mol. Ther. 12, 99–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Zheng, X. et al. RNAi-mediated CD40–CD154 interruption promotes tolerance in autoimmune arthritis. Arthritis Res. Ther. 12, R13 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng, X. et al. Treatment of autoimmune arthritis using RNA interference-modulated dendritic cells. J. Immunol. 184, 6457–6464 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Charbonnier, L. M. et al. Immature dendritic cells suppress collagen-induced arthritis by in vivo expansion of CD49b+ regulatory T cells. J. Immunol. 177, 3806–3813 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Stoop, J. N. et al. Therapeutic effect of tolerogenic dendritic cells in established collagen-induced arthritis is associated with a reduction in Th17 responses. Arthritis Rheum 62, 3656–3665 (2010).

    Article  PubMed  Google Scholar 

  28. Howard, K. A. et al. Influence of hydrophilicity of cationic polymers on the biophysical properties of polyelectrolyte complexes formed by self-assembly with DNA. Biochim. Biophys. Acta 1475, 245–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Howard, K. A. et al. Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol. Ther. 17, 162–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Whitehead, K. A., Langer, R., Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Komano, Y. et al. Arthritic joint-targeting small interfering RNA-encapsulated liposome: implication for treatment strategy for rheumatoid arthritis. J. Pharmacol. Exp. Ther. 340, 109–113 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Schlegel, A. et al. Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes. J. Control Release 152, 393–401 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Khoury, M. et al. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor alpha in experimental arthritis. Arthritis Rheum. 54, 1867–1877 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Khoury, M. et al. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum. 58, 2356–2367 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Courties, G. et al. Cytosolic phospholipase A2α gene silencing in the myeloid lineage alters development of TH1 responses and reduces disease severity in collagen-induced arthritis. Arthritis Rheum. 63, 681–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Courties, G. et al. In vivo RNAi-mediated silencing of TAK1 decreases inflammatory TH1 and TH17 cells through targeting of myeloid cells. Blood 116, 3505–3516 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Schett, G. Cells of the synovium in rheumatoid arthritis. Osteoclasts. Arthritis Res. Ther. 9, 203 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gerwin, N., Hops, C. & Lucke, A. Intraarticular drug delivery in osteoarthritis. Adv. Drug Deliv. Rev. 58, 226–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Ulrich-Vinther, M. et al. In vivo gene delivery to articular chondrocytes mediated by an adeno-associated virus vector. J. Orthop. Res. 22, 726–734 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Santangelo, K. S. & Bertone, A. L. Effective reduction of the interleukin-1β transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences gene expression of mediators implicated in disease pathogenesis. Osteoarthritis Cartilage 19, 1449–1457 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, L. X. et al. Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-κBp65-specific siRNA. Osteoarthritis Cartilage 16, 174–184 (2008).

    CAS  PubMed  Google Scholar 

  42. Kinne, R. W., Stuhlmüller, B. & Burmester, G. R. Cells of the synovium in rheumatoid arthritis. Macrophages. Arthritis Res. Ther. 9, 224 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Thurlings, R. M. et al. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease. PLoS ONE 4, e7865 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Breedveld, F. C. et al. Association between baseline radiographic damage and improvement in physical function after treatment of patients with rheumatoid arthritis. Ann. Rheum. Dis. 64, 52–55 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this article are supported by grants from INSERM and the IMI EU funded project BeTheCure (contract n° 115142-2).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Florence Apparailly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apparailly, F., Jorgensen, C. siRNA-based therapeutic approaches for rheumatic diseases. Nat Rev Rheumatol 9, 56–62 (2013). https://doi.org/10.1038/nrrheum.2012.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing