Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multiple facets of glucocorticoid action in rheumatoid arthritis

Abstract

Glucocorticoids have potent anti-inflammatory effects and have been used to treat patients with rheumatoid arthritis for more than 60 years. However, severe adverse effects of glucocorticoid treatment, including loss of bone mass and increased risk of fractures, are common. Data from studies of glucocorticoid-mediated gene regulation, which utilized conditional knockout mice in animal models of arthritis or glucocorticoid-induced osteoporosis, have substantially increased our understanding of the mechanisms by which glucocorticoids act via the glucocorticoid receptor. Following glucocorticoid binding, the receptor regulates gene expression either by interacting with DNA-bound transcription factors as a monomer or by binding directly to DNA as a dimer. In contrast to the old hypothesis that transrepression mechanisms involving monomeric glucocorticoid receptor actions were responsible for the anti-inflammatory effects of glucocorticoids, whereas dimeric glucocorticoid receptor binding resulted in adverse effects, data from animal models have shown that the anti-inflammatory and adverse effects of glucocorticoids are mediated by both monomeric and dimeric glucocorticoid receptor binding. This improved knowledge of the molecular mechanisms that underlie the beneficial and adverse effects of glucocorticoid therapy might lead to the development of rationales for novel glucocorticoid receptor ligands that could potentially have anti-inflammatory efficacy without adverse effects on bone.

Key Points

  • Despite having severe adverse effects on bone, glucocorticoids have been used to treat patients with rheumatoid arthritis for more than 60 years

  • Glucocorticoids are powerful anti-inflammatory agents that act via the glucocorticoid receptor

  • The glucocorticoid receptor can regulate gene expression as a homodimer that binds directly to DNA or as a monomer that interacts with DNA-bound transcription factors

  • In animal models of arthritis, the anti-inflammatory activity of glucocorticoids requires glucocorticoid receptor dimerization, and in one model requires this dimerization on T cells

  • Deleterious effects of glucocorticoids on bone, such as inhibition of osteoblast function and induction of osteoclastogenesis, might be partly the result of actions of the glucocorticoid receptor monomer

  • Selective glucocorticoid receptor agonists that modulate glucocorticoid receptor function in specific tissues could have similar anti-inflammatory activity to traditional glucocorticoids without their associated adverse effects

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of glucocorticoid receptor monomers and dimers to DNA.
Figure 2: Mechanisms of regulation of gene transcription by activated glucocorticoid receptors.
Figure 3: Cell-type-specific actions of glucocorticoids in the inflamed joint.
Figure 4: Glucocorticoid actions on bone.
Figure 5: Criteria for novel SGRMs.

Similar content being viewed by others

References

  1. Glyn, J. The discovery and early use of cortisone. J. R. Soc. Med. 91, 513–517 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. The Nobel Prize in Physiology or Medicine 1950. Nobelprize.org [online] (2012).

  3. Bijlsma, J. W. & Jacobs, J. W. Glucocorticoid chronotherapy in rheumatoid arthritis. Lancet 371, 183–184 (2008).

    Article  PubMed  Google Scholar 

  4. Kirwan, J. & Power, L. Glucocorticoids: action and new therapeutic insights in rheumatoid arthritis. Curr. Opin. Rheumatol. 19, 233–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Hoes, J. N., Jacobs, J. W., Buttgereit, F. & Bijlsma, J. W. Current view of glucocorticoid co-therapy with DMARDs in rheumatoid arthritis. Nat. Rev. Rheumatol. 6, 693–702 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Bijlsma, J. W. et al. Low-dose glucocorticoid therapy in rheumatoid arthritis: an obligatory therapy. Ann. NY Acad. Sci. 1193, 123–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Wassenberg, S., Rau, R., Steinfeld, P. & Zeidler, H. Very low-dose prednisolone in early rheumatoid arthritis retards radiographic progression over two years: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 52, 3371–3380 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Kirwan, J. R. The effect of glucocorticoids on joint destruction in rheumatoid arthritis. The Arthritis and Rheumatism Council Low-Dose Glucocorticoid Study Group. N. Engl. J. Med. 333, 142–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Svensson, B. et al. Low-dose prednisolone in addition to the initial disease-modifying antirheumatic drug in patients with early active rheumatoid arthritis reduces joint destruction and increases the remission rate: a two-year randomized trial. Arthritis Rheum. 52, 3360–3370 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Ton, F. N., Gunawardene, S. C., Lee, H. & Neer, R. M. Effects of low-dose prednisone on bone metabolism. J. Bone Miner. Res. 20, 464–470 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Van Staa, T. P., Leufkens, H. G., Abenhaim, L., Zhang, B. & Cooper, C. Use of oral corticosteroids and risk of fractures. J. Bone Miner. Res. 15, 993–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Hetland, M. L. et al. Combination treatment with methotrexate, cyclosporine, and intra-articular betamethasone compared with methotrexate and intra-articular betamethasone in early active rheumatoid arthritis: an investigator-initiated, multicenter, randomized, double-blind, parallel-group, placebo-controlled study. Arthritis Rheum. 54, 1401–1409 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Sternberg, E. M. et al. Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc. Natl Acad. Sci. USA 86, 2374–2378 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Jessop, D. S. & Harbuz, M. S. A defect in cortisol production in rheumatoid arthritis: why are we still looking? Rheumatology (Oxford) 44, 1097–1100 (2005).

    Article  CAS  Google Scholar 

  15. Coutinho, A. E. et al. 11β-hydroxysteroid dehydrogenase type 1, but not type 2, deficiency worsens acute inflammation and experimental arthritis in mice. Endocrinology 153, 234–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Buttgereit, F. et al. Transgenic disruption of glucocorticoid signaling in mature osteoblasts and osteocytes attenuates K/BxN mouse serum-induced arthritis in vivo. Arthritis Rheum. 60, 1998–2007 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Baschant, U. et al. Glucocorticoid therapy of antigen-induced arthritis depends on the dimerized glucocorticoid receptor in T cells. Proc. Natl Acad. Sci. USA 108, 19317–19322 (2011).

    Article  PubMed  Google Scholar 

  18. Stahn, C., Löwenberg, M., Hommes, D. W. & Buttgereit, F. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol. Cell Endocrinol. 275, 71–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Beato, M., Herrlich, P. & Schütz, G. Steroid hormone receptors: many actors in search of a plot. Cell 83, 851–857 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Luisi, B. F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497–505 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biddie, S. C. et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell 43, 145–155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siersbæk, R. et al. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. EMBO J. 30, 1459–1472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lamia, K. A. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beck, I. M., De Bosscher, K. & Haegeman, G. Glucocorticoid receptor mutants: man-made tools for functional research. Trends Endocrinol. Metab. 22, 295–310 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Rosenfeld, M. G., Lunyak, V. V. & Glass, C. K. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Surjit, M. et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 145, 224–241 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Dostert, A. & Heinzel, T. DNA-dependent cofactor selectivity of the glucocorticoid receptor. Ernst Schering Res. Found Workshop 40, 279–295 (2002).

    CAS  Google Scholar 

  29. Meijsing, S. H. et al. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324, 407–410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baschant, U. & Tuckermann, J. The role of the glucocorticoid receptor in inflammation and immunity. J. Steroid Biochem. Mol. Biol. 120, 69–75 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Rao, N. A. et al. Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res. 21, 1404–1416 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luecke, H. F. & Yamamoto, K. R. The glucocorticoid receptor blocks P-TEFb recruitment by NFκB to effect promoter-specific transcriptional repression. Genes Dev. 19, 1116–1127 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schäcke, H., Rehwinkel, H., Asadullah, K. & Cato, A. C. Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic index. Exp. Dermatol. 15, 565–573 (2006).

    Article  PubMed  Google Scholar 

  34. Miner, J. N., Hong, M. H. & Negro-Vilar, A. New and improved glucocorticoid receptor ligands. Expert Opin. Investig. Drugs 14, 1527–1545 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Coghlan, M. J. et al. A novel antiinflammatory maintains glucocorticoid efficacy with reduced side effects. Mol. Endocrinol. 17, 860–869 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Schäcke, H. et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc. Natl Acad. Sci. USA 101, 227–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. De Bosscher, K., Haegeman, G. & Elewaut, D. Targeting inflammation using selective glucocorticoid receptor modulators. Curr. Opin. Pharmacol. 10, 497–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Belvisi, M. G. et al. Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity. J. Immunol. 166, 1975–1982 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Schäcke, H. et al. Characterization of ZK 245186, a novel, selective glucocorticoid receptor agonist for the topical treatment of inflammatory skin diseases. Br. J. Pharmacol. 158, 1088–1103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clark, A. R. & Belvisi, M. G. Maps and legends: the quest for dissociated ligands of the glucocorticoid receptor. Pharmacol. Ther. 134, 54–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Miner, J. N. et al. Antiinflammatory glucocorticoid receptor ligand with reduced side effects exhibits an altered protein-protein interaction profile. Proc. Natl Acad. Sci. USA 104, 19244–19249 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Hu, X. et al. The antagonists but not partial agonists of glucocorticoid receptor ligands show substantial side effect dissociation. Endocrinology 152, 3123–3134 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Reichardt, H. M. et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93, 531–541 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Reichardt, H. M. et al. Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J. 20, 7168–7173 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tuckermann, J. P. et al. Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J. Clin. Invest. 117, 1381–1390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kleiman, A. et al. Glucocorticoid receptor dimerization is required for survival in septic shock via suppression of interleukin-1 in macrophages. FASEB J. 26, 722–729 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Ayroldi, E. & Riccardi, C. Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J. 23, 3649–3658 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Mittelstadt, P. R. & Ashwell, J. D. Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J. Biol. Chem. 276, 29603–29610 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Beaulieu, E. et al. Glucocorticoid-induced leucine zipper is an endogenous anti-inflammatory mediator in arthritis. Arthritis Rheum. 62, 2651–2661 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Abraham, S. M. et al. Anti-inflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J. Exp. Med. 203, 1883–1889 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maier, J. V. et al. Dual specificity phosphatase 1 knockout mice show enhanced susceptibility to anaphylaxis but are sensitive to glucocorticoids. Mol. Endocrinol. 21, 2663–2671 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Bhattacharyya, S., Brown, D. E., Brewer, J. A., Vogt, S. K. & Muglia, L. J. Macrophage glucocorticoid receptors regulate Toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood 109, 4313–4319 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vattakuzhi, Y., Abraham, S. M., Freidin, A., Clark, A. R. & Horwood, N. J. Dual specificity phosphatase 1 null mice exhibit spontaneous osteolytic disease and enhanced inflammatory osteolysis in experimental arthritis. Arthritis Rheum. 64, 2201–2210 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Perretti, M. & D'Acquisto, F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat. Rev. Immunol. 9, 62–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, Y. H. et al. Modulation of inflammation and response to dexamethasone by Annexin 1 in antigen-induced arthritis. Arthritis Rheum. 50, 976–984 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Patel, H. B. et al. The impact of endogenous annexin A1 on glucocorticoid control of inflammatory arthritis. Ann. Rheum. Dis. doi:10.1136/annrheumdis-2011-201180.

  57. Lundy, S. K., Sarkar, S., Tesmer, L. A. & Fox, D. A. Cells of the synovium in rheumatoid arthritis. T lymphocytes. Arthritis Res. Ther. 9, 202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mcinnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Hegen, M., Keith, J. C. Jr, Collins, M. & Nickerson-Nutter, C. L. Utility of animal models for identification of potential therapeutics for rheumatoid arthritis. Ann. Rheum. Dis. 67, 1505–1515 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Kouskoff, V. et al. Organ-specific disease provoked by systemic autoimmunity. Cell 87, 811–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Fritsch, R. et al. Characterization of autoreactive T cells to the autoantigens heterogeneous nuclear ribonucleoprotein A2 (RA33) and filaggrin in patients with rheumatoid arthritis. J. Immunol. 169, 1068–1076 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Lubberts, E., Koenders, M. I. & van den Berg, W. B. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res. Ther. 7, 29–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ghoreschi, K., Laurence, A., Yang, X. P., Hirahara, K. & O'Shea, J. J. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol. 32, 395–401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zaiss, M. M. et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol. 184, 7238–7246 (2010).

    Article  PubMed  Google Scholar 

  66. Löwenberg, M. et al. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 106, 1703–1710 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Löwenberg, M. et al. Glucocorticoids cause rapid dissociation of a T cell-receptor-associated protein complex containing LCK and FYN. EMBO Rep. 7, 1023–1029 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kassel, O. et al. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 20, 7108–7116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ayroldi, E. Modulation of T cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor κB. Blood 98, 743–753 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Colin, E. M. et al. 1,25-dihydroxyvitamin D3 modulates TH17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum. 62, 132–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. McKinley, L. et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol. 181, 4089–4097 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mauri, C. & Ehrenstein, M. R. Cells of the synovium in rheumatoid arthritis. B cells. Arthritis Res. Ther. 9, 205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. MacLennan, I. C. et al. The changing preference of T and B cells for partners as T-dependent antibody responses develop. Immunol. Rev. 156, 53–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Lill-Elghanian, D., Schwartz, K., King, L. & Fraker, P. Glucocorticoid-induced apoptosis in early B cells from human bone marrow. Exp. Biol. Med. (Maywood) 227, 763–770 (2002).

    Article  CAS  Google Scholar 

  75. Igarashi, H. et al. Early lymphoid progenitors in mouse and man are highly sensitive to glucocorticoids. Int. Immunol. 17, 501–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Moser, M. et al. Glucocorticoids downregulate dendritic cell function in vitro and in vivo. Eur. J. Immunol. 25, 2818–2824 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Matyszak, M. K., Citterio, S., Rescigno, M. & Ricciardi-Castagnoli, P. Differential effects of corticosteroids during different stages of dendritic cell maturation. Eur. J. Immunol. 30, 1233–1242 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Larangé, A., Antonios, D., Pallardy, M. & Kerdine-Römer, S. Glucocorticoids inhibit dendritic cell maturation induced by Toll-like receptor 7 and Toll-like receptor 8. J. Leukoc. Biol. 91, 105–117 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Piemonti, L. et al. Glucocorticoids increase the endocytic activity of human dendritic cells. Int. Immunol. 11, 1519–1526 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Wiley, R. E. et al. Transient corticosteroid treatment permanently amplifies the Th2 response in a murine model of asthma. J. Immunol. 172, 4995–5005 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Luther, C. et al. Prednisolone treatment induces tolerogenic dendritic cells and a regulatory milieu in myasthenia gravis patients. J. Immunol. 183, 841–848 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Coutinho, A. E. & Chapman, K. E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell Endocrinol. 335, 2–13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gerlag, D. M. et al. Effects of oral prednisolone on biomarkers in synovial tissue and clinical improvement in rheumatoid arthritis. Arthritis Rheum. 50, 3783–3791 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Ehrchen, J. et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109, 1265–1274 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Frey, O. et al. Regulatory T cells control the transition from acute into chronic inflammation in glucose-6-phosphate isomerase-induced arthritis. Ann. Rheum. Dis. 69, 1511–1518 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Solomon, S., Rajasekaran, N., Jeisy-Walder, E., Snapper, S. B. & Illges, H. A crucial role for macrophages in the pathology of K/B × N serum-induced arthritis. Eur. J. Immunol. 35, 3064–3073 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Schweingruber, N. et al. Liposomal encapsulation of glucocorticoids alters their mode of action in the treatment of experimental autoimmune encephalomyelitis. J. Immunol. 187, 4310–4318 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Edwards, S. W. & Hallett, M. B. Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Immunol. Today 18, 320–324 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Tanaka, D., Kagari, T., Doi, H. & Shimozato, T. Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis. Immunology 119, 195–202 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee, D. M. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Zhou, J. S., Xing, W., Friend, D. S., Austen, K. F. & Katz, H. R. Mast cell deficiency in KitW-sh mice does not impair antibody-mediated arthritis. J. Exp. Med. 204, 2797–2802 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Feyerabend, T. B. et al. Cre-mediated cell ablation contests mast cell contribution in models of antibody and T cell-mediated autoimmunity. Immunity 35, 832–844 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Firestein, G. S. NF-κB: holy grail for rheumatoid arthritis? Arthritis Rheum. 50, 2381–2386 (2004).

    Article  PubMed  Google Scholar 

  95. Mcinnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Gossye, V. et al. Differential mechanism of NF-κB inhibition by two glucocorticoid receptor modulators in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 60, 3241–3250 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Van Offel, J. F. et al. Influence of bisphosphonates on the production of pro-inflammatory cytokines by activated human articular chondrocytes. Cytokine 31, 298–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Derfoul, A., Perkins, G. L., Hall, D. J. & Tuan, R. S. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 24, 1487–1495 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Canalis, E., Mazziotti, G., Giustina, A. & Bilezikian, J. P. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos. Int. 18, 1319–1328 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Hofbauer, L. C. et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140, 4382–4389 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Hofbauer, L. C. et al. Prevention of glucocorticoid-induced bone loss in mice by inhibition of RANKL. Arthritis Rheum. 60, 1427–1437 (2009).

    Article  PubMed  Google Scholar 

  102. Rauch, A. et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 11, 517–531 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Henneicke, H. et al. Corticosterone selectively targets endo-cortical surfaces by an osteoblast-dependent mechanism. Bone 49, 733–742 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Kim, H. J. et al. Glucocorticoids suppress bone formation via the osteoclast. J. Clin. Invest. 116, 2152–2160 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jia, D., O'brien, C. A., Stewart, S. A., Manolagas, S. C. & Weinstein, R. S. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 147, 5592–5599 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Weinstein, R. S., Jilka, R. L., Parfitt, A. M. & Manolagas, S. C. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J. Clin. Invest. 102, 274–282 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Plotkin, L. I. et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J. Clin. Invest. 104, 1363–1374 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Plotkin, L. I., Manolagas, S. C. & Bellido, T. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival. Evidence for inside-out signaling leading to anoikis. J. Biol. Chem. 282, 24120–24130 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Lane, N. E. et al. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J. Bone Miner. Res. 21, 466–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. O'brien, C. A. et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145, 1835–1841 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Jia, J. et al. Glucocorticoid dose determines osteocyte cell fate. FASEB J. 25, 3366–3376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235–1241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Pinzone, J. J. et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 113, 517–525 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Horsch, K. et al. Mitogen-activated protein kinase phosphatase 1/dual specificity phosphatase 1 mediates glucocorticoid inhibition of osteoblast proliferation. Mol. Endocrinol. 21, 2929–2940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Conradie, M. M. et al. MKP-1 knockout does not prevent glucocorticoid-induced bone disease in mice. Calcif. Tissue Int. 89, 221–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Luppen, C. A., Chandler, R. L., Noh, T., Mortlock, D. P. & Frenkel, B. BMP-2 vs BMP-4 expression and activity in glucocorticoid-arrested MC3T3-E1 osteoblasts: smad signaling, not alkaline phosphatase activity, predicts rescue of mineralization. Growth Factors 26, 226–237 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rauch, A. et al. An anti-inflammatory selective glucocorticoid receptor modulator preserves osteoblast differentiation. FASEB J. 25, 1323–1332 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Franceschi, R., Ge, C. & Li, Y. Osteoblasts: more than we thought. IBMS BoneKEY 9, 1–3 (2012).

    Article  Google Scholar 

  120. Guan, M. et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat. Med. 18, 456–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Joanny, E. et al. Anti-inflammatory effects of selective glucocorticoid receptor modulators are partially dependent on up-regulation of dual specificity phosphatase 1. Br. J. Pharmacol. 165, 1124–1136 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dewint, P. et al. A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collagen-induced arthritis. J. Immunol. 180, 2608–2615 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Rauner, M. et al. Dissociation of osteogenic and immunological effects by the selective glucocorticoid receptor agonist, compound A, in human bone marrow stromal cells. Endocrinology 152, 103–112 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Thiele, S. et al. Selective glucocorticoid receptor modulation maintains bone mineral density in mice. J. Bone Miner. Res. http://dx.doi.org/10.1002/jbmr.1688.

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG Tu220/3, Tu220/6 within the Priority Program “Immunobone” SPP 1486; J. Tuckermann), the Boehringer Ingelheim Stiftung (J. Tuckermann), the Leibniz Graduate School of Ageing of the Fritz Lipmann Institute (U. Baschant), NIH grants K24-AR04884-06 and R01 AR043052 (N. E. Lane) and Endowed for Aging from University of California, Davis (N. E. Lane).

Author information

Authors and Affiliations

Authors

Contributions

U. Baschant and J. Tuckermann researched the data, wrote the article, provided a substantial contribution to discussions of the content and reviewed and edited the manuscript before submission. N. E. Lane wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jan Tuckermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baschant, U., Lane, N. & Tuckermann, J. The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat Rev Rheumatol 8, 645–655 (2012). https://doi.org/10.1038/nrrheum.2012.166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing