Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The role of bioinformatics in studying rheumatic and autoimmune disorders

Abstract

In the past decade, the availability and abundance of individual-level molecular data, such as gene expression, proteomics and sequence data, has enabled the use of integrative computational approaches to pose and answer novel questions about disease. In this article, we discuss several examples of applications of bioinformatics techniques to study autoimmune and rheumatic disorders. We focus our discussion on how integrative techniques can be applied to analyze gene expression and genetic variation data across different diseases, and discuss the implications of such analyses. We also outline current challenges and future directions of these approaches. We show that integrative computational methods are essential for translational research and provide a powerful opportunity to improve human health by refining the current knowledge about diagnostics, therapeutics and mechanisms of disease pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Levels of integrative analysis.
Figure 2: Integrative analysis of GWAS data.
Figure 3: Integrative analysis of drug-induced and disease gene expression data.

Similar content being viewed by others

References

  1. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  Google Scholar 

  2. Barrett, T. et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res. 37, D885–D890 (2009).

    Article  CAS  Google Scholar 

  3. Butte, A. J. Translational bioinformatics applications in genome medicine. Genome Med. 1, 64 (2009).

    Article  Google Scholar 

  4. Walsh, N. C., Crotti, T. N., Goldring, S. R. & Gravallese, E. M. Rheumatic diseases: the effects of inflammation on bone. Immunol. Rev. 208, 228–251 (2005).

    Article  CAS  Google Scholar 

  5. Coward, J., Germain, R. N. & Altan-Bonnet, G. Perspectives for computer modeling in the study of T cell activation. Cold Spring Harb. Perspect. Biol. 2, a005538 (2010).

    Article  Google Scholar 

  6. Germain, R. N. Computational analysis of T cell receptor signaling and ligand discrimination—past, present, and future. FEBS Lett. 584, 4814–4822 (2010).

    Article  CAS  Google Scholar 

  7. Crow, M. K. & Wohlgemuth, J. Microarray analysis of gene expression in lupus. Arthritis Res. Ther. 5, 279–287 (2003).

    Article  CAS  Google Scholar 

  8. Han, G. M. et al. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun. 4, 177–186 (2003).

    Article  CAS  Google Scholar 

  9. Booth, G. et al. Gene expression profiles at different stages of collagen-induced arthritis. Autoimmunity 41, 512–521 (2008).

    Article  CAS  Google Scholar 

  10. Raychaudhuri, S. et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 41, 1313–1318 (2009).

    Article  CAS  Google Scholar 

  11. Ptacek, T., Li, X., Kelley, J. M. & Edberg, J. C. Copy number variants in genetic susceptibility and severity of systemic lupus erythematosus. Cytogenet. Genome Res. 123, 142–147 (2008).

    Article  CAS  Google Scholar 

  12. Graham, R. R., Hom, G., Ortmann, W. & Behrens, T. W. Review of recent genome-wide association scans in lupus. J. Intern. Med. 265, 680–688 (2009).

    Article  CAS  Google Scholar 

  13. Freudenberg, J. et al. Locus category based analysis of a large genome-wide association study of rheumatoid arthritis. Hum. Mol. Genet. 19, 3863–3872 (2010).

    Article  CAS  Google Scholar 

  14. Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    Article  CAS  Google Scholar 

  15. Tsuchiya, N., Ito, I. & Kawasaki, A. Association of IRF5, STAT4 and BLK with systemic lupus erythematosus and other rheumatic diseases. Nihon Rinsho Meneki Gakkai Kaishi 33, 57–65 (2010).

    Article  CAS  Google Scholar 

  16. Mackay, I. R. Clustering and commonalities among autoimmune diseases. J. Autoimmun. 33, 170–177 (2009).

    Article  CAS  Google Scholar 

  17. Orozco, G. et al. Analysis of a functional BTNL2 polymorphism in type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Hum. Immunol. 66, 1235–1241 (2005).

    Article  CAS  Google Scholar 

  18. Wang, K. et al. Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Hum. Mol. Genet. 19, 2059–2067 (2010).

    Article  CAS  Google Scholar 

  19. Huang, W., Wang, P., Liu, Z. & Zhang, L. Identifying disease associations via genome-wide association studies. BMC Bioinformatics 10 (Suppl. 1), S68 (2009).

    Article  Google Scholar 

  20. Torkamani, A., Topol, E. J. & Schork, N. J. Pathway analysis of seven common diseases assessed by genome-wide association. Genomics 92, 265–272 (2008).

    Article  CAS  Google Scholar 

  21. Sirota, M., Schaub, M. A., Batzoglou, S., Robinson, W. H. & Butte, A. J. Autoimmune disease classification by inverse association with SNP alleles. PLoS Genet. 5, e1000792 (2009).

    Article  Google Scholar 

  22. Dudley, J. T., Tibshirani, R., Deshpande, T. & Butte, A. J. Disease signatures are robust across tissues and experiments. Mol. Syst. Biol. 5, 307 (2009).

    Article  Google Scholar 

  23. Ungethuem, U. et al. Molecular signatures and new candidates to target the pathogenesis of rheumatoid arthritis. Physiol. Genomics 42A, 267–282 (2010).

    Article  CAS  Google Scholar 

  24. Chaussabel, D. et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 29, 150–164 (2008).

    Article  CAS  Google Scholar 

  25. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  Google Scholar 

  26. Iskar, M. et al. Drug-induced regulation of target expression. PLoS Comput. Biol. 6, e1000925 (2010).

    Article  Google Scholar 

  27. Iorio, F. et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl Acad. Sci. USA 107, 14621–14626 (2010).

    Article  CAS  Google Scholar 

  28. Garman, K. S. et al. A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities. Proc. Natl Acad. Sci. USA 105, 19432–19437 (2008).

    Article  CAS  Google Scholar 

  29. Setlur, S. R. et al. Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J. Natl Cancer Inst. 100, 815–825 (2008).

    Article  CAS  Google Scholar 

  30. Pujol, A., Mosca, R., Farrés, J. & Aloy, P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol. Sci. 31, 115–123 (2010).

    Article  CAS  Google Scholar 

  31. Zhong, H., Yang, X., Kaplan, L. M., Molony, C. & Schadt, E. E. Integrating pathway analysis and genetics of gene expression for genome-wide association studies. Am. J. Hum. Genet. 86, 581–591 (2010).

    Article  CAS  Google Scholar 

  32. Chen, R. et al. FitSNPs: highly differentially expressed genes are more likely to have variants associated with disease. Genome Biol. 9, R170 (2008).

    Article  Google Scholar 

  33. Hsu, Y. H. et al. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits. PLoS Genet. 6, e1000977 (2010).

    Article  Google Scholar 

  34. Chen, D. P. et al. Clinical arrays of laboratory measures, or “clinarrays”, built from an electronic health record enable disease subtyping by severity. AMIA Annu. Symp. Proc. 2007, 115–119 (2007).

    PubMed Central  Google Scholar 

  35. Patel, C. J., Bhattacharya, J. & Butte, A. J. An Environment-Wide Association Study (EWAS) on type 2 diabetes mellitus. PLoS ONE 5, e10746 (2010).

    Article  Google Scholar 

  36. Utz, P. J. Multiplexed assays for identification of biomarkers and surrogate markers in systemic lupus erythematosus. Lupus 13, 304–311 (2004).

    Article  CAS  Google Scholar 

  37. Hueber, W. et al. Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum. 52, 2645–2655 (2005).

    Article  CAS  Google Scholar 

  38. Raychaudhuri, S. et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat. Genet. 40, 1216–1223 (2008).

    Article  CAS  Google Scholar 

  39. Pointon, J. J. et al. Elucidating the chromosome 9 association with AS; CARD9 is a candidate gene. Genes Immun. 11, 490–496 (2010).

    Article  CAS  Google Scholar 

  40. Zhang, H. G. et al. Novel tumor necrosis factor α-regulated genes in rheumatoid arthritis. Arthritis Rheum. 50, 420–431 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lucile Packard Foundation for Children's Health, the Hewlett Packard Foundation, US National Library of Medicine (R01 LM009719 and T15 LM007033), Howard Hughes Medical Institute, and Pharmaceutical Research and Manufacturers of America Foundation. We thank the anonymous reviewers for helping us improve the manuscript and members of the Butte Lab from Stanford University for constructive discussion.

Author information

Authors and Affiliations

Authors

Contributions

M. Sirota and A. J. Butte contributed equally to all aspects of preparation of the manuscript.

Corresponding author

Correspondence to Marina Sirota.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirota, M., Butte, A. The role of bioinformatics in studying rheumatic and autoimmune disorders. Nat Rev Rheumatol 7, 489–494 (2011). https://doi.org/10.1038/nrrheum.2011.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.87

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing