Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging roles of microRNAs in CNS injuries

Abstract

The consequences of injuries to the CNS are profound and persistent, resulting in substantial burden to both the individual patient and society. Existing treatments for CNS injuries such as stroke, traumatic brain injury and spinal cord injury have proved inadequate, partly owing to an incomplete understanding of post-injury cellular and molecular changes. MicroRNAs (miRNAs) are RNA molecules composed of 20–24 nucleotides that function to inhibit mRNA translation and have key roles in normal CNS development and function, as well as in disease. However, a role for miRNAs as effectors of CNS injury has recently emerged. Use of bioinformatics to assess the mRNA targets of miRNAs enables high-order analysis of interconnected networks, and can reveal affected pathways that may not be identifiable with the use of traditional techniques such as gene knock-in or knockout approaches, or mRNA microarrays. In this Review, we discuss the findings of miRNA microarray studies of spinal cord injury, traumatic brain injury and stroke, as well as the use of gene ontological algorithms to discern global patterns of molecular and cellular changes following such injuries. Furthermore, we examine the current state of miRNA-based therapies and their potential to improve functional outcomes in patients with CNS injuries.

Key Points

  • MicroRNAs (miRNAs) are critical for normal development but also have a role in disease, particularly of the CNS

  • miRNA microarrays provide the highest-order view of changes that occur following injuries to the CNS, such as stroke, spinal cord injury or traumatic brain injury

  • These CNS injuries affect key cellular pathways such as apoptosis, inflammation and cellular proliferation, all of which are regulated by miRNAs

  • miRNA-based therapies that augment or inhibit miRNA activity, and with enhanced bioavailability and function, are currently being developed

  • Artificial miRNAs can be designed to bind to and modify groups of mRNA transcripts that are not naturally targeted by endogenous miRNAs

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic modulation of miRNA activity.

Similar content being viewed by others

References

  1. Coronado, V. G. et al. Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveill. Summ. 60, 1–32 (2011).

    PubMed  Google Scholar 

  2. Paralysis facts & figures. Christopher & Dana Reeve Foundation Paralysis Resource Center [online], (2012).

  3. Stroke 101 fact sheet. National Stroke Association [online], (2012).

  4. Munro, K. M. & Perreau, V. M. Current and future applications of transcriptomics for discovery in CNS disease and injury. Neurosignals 17, 311–327 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Qureshi, I. A. & Mehler, M. F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci. 13, 528–541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salta, E. & De Strooper, B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol. 11, 189–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bian, S. & Sun, T. Functions of noncoding RNAs in neural development and neurological diseases. Mol. Neurobiol. 44, 359–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meza-Sosa, K. F., Valle-García, D., Pedraza-Alva, G. & Pérez-Martínez, L. Role of microRNAs in central nervous system development and pathology. J. Neurosci. Res. 90, 1–12 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeng, Y. & Cullen, B. R. Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Basyuk, E., Suavet, F., Doglio, A., Bordonné, R. & Bertrand, E. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res. 31, 6593–6597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, J. et al. The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  PubMed  Google Scholar 

  17. Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Long, J. M. & Lahiri, D. K. Advances in microRNA experimental approaches to study physiological regulation of gene products implicated in CNS disorders. Exp. Neurol. 235, 402–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Nass, D. et al. miR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 19, 375–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Peters, L. & Meister, G. Argonaute proteins: mediators of RNA silencing. Mol. Cell 26, 611–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Fabian, M. R. & Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19, 586–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Esquela-Kerscher, A. & Slack, F. J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. & Tuschl, T. New microRNAs from mouse and human. RNA 9, 175–179 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. De Pietri Tonelli, D. et al. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 3911–3921 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Davis, T. H. et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J. Neurosci. 28, 4322–4330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Bak, M. et al. MicroRNA expression in the adult mouse central nervous system. RNA 14, 432–444 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miska, E. A. et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5, R68 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Smith, B. et al. Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment. PLoS ONE 5, e11109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng, K., Li, H., Zhu, Y., Zhu, Q. & Qiu, M. MicroRNAs are essential for the developmental switch from neurogenesis to gliogenesis in the developing spinal cord. J. Neurosci. 30, 8245–8250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, Y., Wang, F., Lee, J. A. & Gao, F. B. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev. 20, 2793–2805 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, C., Sun, G., Li, S. & Shi, Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat. Struct. Mol. Biol. 16, 365–371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng, L. C., Pastrana, E., Tavazoie, M. & Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, X. S. et al. MicroRNA profiling in subventricular zone after stroke: miR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS ONE 6, e23461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. He, X., Yu, Y., Awatramani, R. & Lu, Q. R. Unwrapping myelination by microRNAs. Neuroscientist 18, 45–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Dugas, J. C. et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65, 597–611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, X. et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65, 612–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Budde, H. et al. Control of oligodendroglial cell number by the miR-17-92 cluster. Development 137, 2127–2132 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Smirnova, L. et al. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 21, 1469–1477 (2005).

    Article  PubMed  Google Scholar 

  53. Sahni, V. et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J. Neurosci. 30, 1839–1855 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zheng, K., Li, H., Huang, H. & Qiu, M. MicroRNAs and glial cell development. Neuroscientist 18, 114–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Tao, J. et al. Deletion of astroglial Dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J. Neurosci. 31, 8306–8319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ackery, A., Tator, C. & Krassioukov, A. A global perspective on spinal cord injury epidemiology. J. Neurotrauma 21, 1355–1370 (2004).

    Article  PubMed  Google Scholar 

  57. Spinal cord injury facts and figures at a glance. National Spinal Cord Injury Statistical Center [online], (2012).

  58. Liu, N. K., Wang, X. F., Lu, Q. B. & Xu, X. M. Altered microRNA expression following traumatic spinal cord injury. Exp. Neurol. 219, 424–429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yunta, M. et al. MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS ONE 7, e34534 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Biase, A. et al. Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity. Physiol. Genomics 22, 368–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Strickland, E. R. et al. MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 186, 146–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, J. et al. miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle 9, 1809–1818 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Jee, M. K., Jung, J. S., Im, Y. B., Jung, S. J. & Kang, S. K. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum. Gene Ther. 23, 508–520 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Carraro, G. et al. miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev. Biol. 333, 238–250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yan, H. et al. MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum. Gene Ther. 21, 1723–1734 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Jee, M. K. et al. MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 135, 1237–1252 (2012).

    Article  PubMed  Google Scholar 

  68. Uittenbogaard, M., Baxter, K. K. & Chiaramello, A. The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass. ASN Neuro 2, e00034 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, G., Detloff, M. R., Miller, K. N., Santi, L. & Houlé, J. D. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp. Neurol. 233, 447–456 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Bhalala, O. G. et al. microRNA-21 regulates astrocytic response following spinal cord injury. J. Neurosci. 32, 17935–17947 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Ciafrè, S. A. et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 334, 1351–1358 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fawcett, J. W. & Asher, R. A. The glial scar and central nervous system repair. Brain Res. Bull. 49, 377–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Barnabé-Heider, F. & Frisén, J. Stem cells for spinal cord repair. Cell Stem Cell 3, 16–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Sofroniew, M. V. Reactive astrocytes in neural repair and protection. Neuroscientist 11, 400–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Davis, B. N., Hilyard, A. C., Lagna, G. & Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 56–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van den Brand, R. et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, G., Keeler, B. E., Zhukareva, V. & Houlé, J. D. Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats. Exp. Neurol. 226, 200–206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, K. et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 13, 1075–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shively, S. B. & Perl, D. P. Traumatic brain injury, shell shock, and posttraumatic stress disorder in the military—past, present, and future. J. Head Trauma Rehabil. 27, 234–239 (2012).

    Article  PubMed  Google Scholar 

  83. Lei, P., Li, Y., Chen, X., Yang, S. & Zhang, J. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res. 1284, 191–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Orrison, W. W. et al. Traumatic brain injury: a review and high-field MRI findings in 100 unarmed combatants using a literature-based checklist approach. J. Neurotrauma 26, 689–701 (2009).

    Article  PubMed  Google Scholar 

  85. Cohen, A. S. et al. Injury-induced alterations in CNS electrophysiology. Prog. Brain Res. 161, 143–169 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Redell, J. B., Liu, Y. & Dash, P. K. Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. J. Neurosci. Res. 87, 1435–1448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu, Z. et al. Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. PLoS ONE 7, e39357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Redell, J. B., Zhao, J. & Dash, P. K. Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J. Neurosci. Res. 89, 212–221 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Balakathiresan, N. et al. MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J. Neurotrauma 29, 1379–1387 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Geyer, C., Ulrich, A., Gräfe, G., Stach, B. & Till, H. Diagnostic value of S100B and neuron-specific enolase in mild pediatric traumatic brain injury. J. Neurosurg. Pediatr. 4, 339–344 (2009).

    Article  PubMed  Google Scholar 

  91. Papa, L. et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit. Care Med. 38, 138–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Svetlov, S. I. et al. Morphologic and biochemical characterization of brain injury in a model of controlled blast overpressure exposure. J. Trauma 69, 795–804 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Redell, J. B., Moore, A. N., Ward, N. H. 3rd, Hergenroeder, G. W. & Dash, P. K. Human traumatic brain injury alters plasma microRNA levels. J. Neurotrauma 27, 2147–2156 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Marion, D. & Bullock, M. R. Current and future role of therapeutic hypothermia. J. Neurotrauma 26, 455–467 (2009).

    Article  PubMed  Google Scholar 

  95. Dietrich, W. D., Atkins, C. M. & Bramlett, H. M. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J. Neurotrauma 26, 301–312 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Choi, H. A., Badjatia, N. & Mayer, S. A. Hypothermia for acute brain injury—mechanisms and practical aspects. Nat. Rev. Neurol. 8, 214–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Truettner, J. S., Alonso, O. F., Bramlett, H. M. & Dietrich, W. D. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J. Cereb. Blood Flow Metab. 31, 1897–1907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bushnell, C. D. Stroke and the female brain. Nat. Clin. Pract. Neurol. 4, 22–33 (2008).

    Article  PubMed  Google Scholar 

  99. Tan, K. S. et al. Expression profile of MicroRNAs in young stroke patients. PLoS ONE 4, e7689 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, D. Z. et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J. Cereb. Blood Flow Metab. 30, 92–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Badaut, J., Lasbennes, F., Magistretti, P. J. & Regli, L. Aquaporins in brain: distribution, physiology, and pathophysiology. J. Cereb. Blood Flow Metab. 22, 367–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Manley, G. T. et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6, 159–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Papadopoulos, M. C., Manley, G. T., Krishna, S. & Verkman, A. S. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 18, 1291–1293 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Jeyaseelan, K., Lim, K. Y. & Armugam, A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39, 959–966 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Sepramaniam, S. et al. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J. Biol. Chem. 285, 29223–29230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yin, K. J. et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol. Dis. 38, 17–26 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shi, G. et al. Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp. Brain Res. 216, 225–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Buller, B. et al. MicroRNA-21 protects neurons from ischemic death. FEBS J. 277, 4299–4307 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Raha, S. & Robinson, B. H. Mitochondria, oxygen free radicals, and apoptosis. Am. J. Med. Genet. 106, 62–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Dharap, A., Bowen, K., Place, R., Li, L. C. & Vemuganti, R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J. Cereb. Blood Flow Metab. 29, 675–687 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Dharap, A. & Vemuganti, R. Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. J. Neurochem. 113, 1685–1691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee, S. T. et al. MicroRNAs induced during ischemic preconditioning. Stroke 41, 1646–1651 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Lusardi, T. A. et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J. Cereb. Blood Flow Metab. 30, 744–756 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Stenzel-Poore, M. P. et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362, 1028–1037 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Ziu, M., Fletcher, L., Rana, S., Jimenez, D. F. & Digicaylioglu, M. Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS ONE 6, e14724 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shih, J. D., Waks, Z., Kedersha, N. & Silver, P. A. Visualization of single mRNAs reveals temporal association of proteins with microRNA-regulated mRNA. Nucleic Acids Res. 39, 7740–7749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    Article  PubMed  Google Scholar 

  119. Peacock, H. et al. Nucleobase and ribose modifications control immunostimulation by a microRNA-122-mimetic RNA. J. Am. Chem. Soc. 133, 9200–9203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Akao, Y. et al. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther. 17, 398–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Pereira, D. M., Rodrigues, P. M., Borralho, P. M. & Rodrigues, C. M. Delivering the promise of miRNA cancer therapeutics. Drug Discov. Today 18, 282–289 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Ouyang, Y. B. et al. miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol. Dis. 45, 555–563 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Lee, S. T. et al. Altered microRNA regulation in Huntington's disease models. Exp. Neurol. 227, 172–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Krützfeldt, J. et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35, 2885–2892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Broderick, J. A. & Zamore, P. D. MicroRNA therapeutics. Gene Ther. 18, 1104–1110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Grünweller, A. & Hartmann, R. K. Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 21, 235–243 (2007).

    Article  PubMed  Google Scholar 

  128. Stenvang, J., Silahtaroglu, A. N., Lindow, M., Elmen, J. & Kauppinen, S. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin. Cancer Biol. 18, 89–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Elmen, J. et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 36, 1153–1162 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  133. Elmen, J. et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 33, 439–447 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, H. et al. Synthetic microRNA cassette dosing: pharmacokinetics, tissue distribution and bioactivity. Mol. Pharm. 9, 1638–1644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Luikart, B. W. et al. miR-132 mediates the integration of newborn neurons into the adult dentate gyrus. PLoS ONE 6, e19077 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gentner, B. et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat. Methods 6, 63–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Schorey, J. S. & Bhatnagar, S. Exosome function: from tumor immunology to pathogen biology. Traffic 9, 871–881 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Simpson, R. J., Jensen, S. S. & Lim, J. W. Proteomic profiling of exosomes: current perspectives. Proteomics 8, 4083–4099 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Kotipatruni, R. R. et al. p53- and Bax-mediated apoptosis in injured rat spinal cord. Neurochem. Res. 36, 2063–2074 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Nagel, S. et al. Microarray analysis of the global gene expression profile following hypothermia and transient focal cerebral ischemia. Neuroscience 208, 109–122 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Zeng, Y., Wagner, E. J. & Cullen, B. R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. De Guire, V. et al. Designing small multiple-target artificial RNAs. Nucleic Acids Res. 38, e140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

O. G. Bhalala and J. A. Kessler are supported by NIH Grants R01NS20013 and R01NS20778. M. Srikanth is supported by NIH Grant F30NS065590.

Author information

Authors and Affiliations

Authors

Contributions

O. G. Bhalala researched data for the article. All authors provided substantial contributions to discussion of content, writing the article, and to the review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Oneil G. Bhalala.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhalala, O., Srikanth, M. & Kessler, J. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9, 328–339 (2013). https://doi.org/10.1038/nrneurol.2013.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing