Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroimaging in frontotemporal lobar degeneration—predicting molecular pathology

Abstract

Frontotemporal lobar degeneration (FTLD) encompasses a group of diseases characterized by neuronal loss and gliosis of the frontal and temporal lobes. Almost all cases of FTLD can be classified into three categories on the basis of deposition of one of three abnormal proteins: the microtubule-associated protein tau, TAR DNA-binding protein 43, or fused in sarcoma. The specific diagnoses within each of these three categories are further differentiated by the distribution and morphological appearance of the protein-containing inclusions. Future treatments are likely to target these abnormal proteins; the clinical challenge, therefore, is to be able to predict molecular pathology during life. Clinical diagnosis alone has had variable success in helping to predict pathology, and is particularly poor in the diagnosis of behavioral variant frontotemporal dementia, which can be associated with all three abnormal proteins. Consequently, other biomarkers of disease are needed. This Review highlights how patterns of atrophy assessed on MRI demonstrate neuroanatomical signatures of the individual FTLD pathologies, independent of clinical phenotype. The roles of these patterns of atrophy as biomarkers of disease, and their potential to help predict pathology during life in patients with FTLD, are also discussed.

Key Points

  • The term frontotemporal lobar degeneration (FTLD) encompasses a group of pathological disorders that can be characterized by deposition of abnormal forms of tau, TAR DNA-binding protein 43 or fused in sarcoma

  • Predicting the underlying pathology in patients with FTLD will be particularly important when treatments become available that target these abnormal proteins

  • Neuroimaging studies in patients with autopsy-confirmed FTLD have shown that the different pathological diagnoses have specific neuroanatomical signatures

  • The imaging signatures of pathology in patients with FTLD disorders may be useful for predicting the underlying pathology in these individuals

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of gray matter loss in FTLD-tau pathologies.
Figure 2: Patterns of gray matter loss in FTLD-TDP pathologies.
Figure 3: Patterns of gray matter loss in patients with FTLD-FUS pathology.

Similar content being viewed by others

References

  1. Josephs, K. A. Frontotemporal dementia and related disorders: deciphering the enigma. Ann. Neurol. 64, 4–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Josephs, K. A. et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 122, 137–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mackenzie, I. R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    Article  PubMed  Google Scholar 

  4. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Neumann, M. et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132, 2922–2931 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hutton, M. et al. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Dejesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36, 377–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwiatkowski, T. J. Jr et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet 37, 806–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Forman, M. S. et al. Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. J. Neuropathol. Exp. Neurol. 65, 571–581 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Neumann, M. et al. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J. Neuropathol. Exp. Neurol. 66, 152–157 (2007).

    Article  PubMed  Google Scholar 

  19. Holm, I. E., Isaacs, A. M. & Mackenzie, I. R. Absence of FUS-immunoreactive pathology in frontotemporal dementia linked to chromosome 3 (FTD-3) caused by mutation in the CHMP2B gene. Acta Neuropathol. 118, 719–720 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Snowden, J. S. et al. The most common type of FTLD-FUS (aFTLD-U) is associated with a distinct clinical form of frontotemporal dementia but is not related to mutations in the FUS gene. Acta Neuropathol. 122, 99–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Josephs, K. A. et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 66, 41–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Hodges, J. R. et al. Clinicopathological correlates in frontotemporal dementia. Ann. Neurol. 56, 399–406 (2004).

    Article  PubMed  Google Scholar 

  23. Josephs, K. A. et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129, 1385–1398 (2006).

    Article  PubMed  Google Scholar 

  24. Deramecourt, V. et al. Prediction of pathology in primary progressive language and speech disorders. Neurology 74, 42–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Forman, M. S. et al. Frontotemporal dementia: clinicopathological correlations. Ann. Neurol. 59, 952–962 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kertesz, A., McMonagle, P., Blair, M., Davidson, W. & Munoz, D. G. The evolution and pathology of frontotemporal dementia. Brain 128, 1996–2005 (2005).

    Article  PubMed  Google Scholar 

  27. Vemuri, P. et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. Neuroimage 42, 559–567 (2008).

    Article  PubMed  Google Scholar 

  28. Whitwell, J. L. et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 71, 743–749 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dickson, D. W. et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J. Neuropathol. Exp. Neurol. 61, 935–946 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kouri, N., Whitwell, J. L., Josephs, K. A., Rademakers, R. & Dickson, D. W. Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat. Rev. Neurol. 7, 263–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Hauw, J. J. et al. Preliminary NINDS neuropathologic criteria for Steele–Richardson–Olszewski syndrome (progressive supranuclear palsy). Neurology 44, 2015–2019 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Dickson, D. W. Neuropathology of Pick's disease. Neurology 56, S16–S20 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Bigio, E. H. et al. Frontal lobe dementia with novel tauopathy: sporadic multiple system tauopathy with dementia. J. Neuropathol. Exp. Neurol. 60, 328–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kovacs, G. G. et al. White matter tauopathy with globular glial inclusions: a distinct sporadic frontotemporal lobar degeneration. J. Neuropathol. Exp. Neurol. 67, 963–975 (2008).

    Article  PubMed  Google Scholar 

  35. Braak, H. & Braak, E. Argyrophilic grains: characteristic pathology of cerebral cortex in cases of adult onset dementia without Alzheimer changes. Neurosci. Lett. 76, 124–127 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Ishihara, K. et al. Argyrophilic grain disease presenting with frontotemporal dementia: a neuropsychological and pathological study of an autopsied case with presenile onset. Neuropathology 25, 165–170 (2005).

    Article  PubMed  Google Scholar 

  37. Josephs, K. A. et al. Argyrophilic grains: a distinct disease or an additive pathology? Neurobiol. Aging 29, 566–573 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Boeve, B. F. et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology 53, 795–800 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Josephs, K. A. et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol. Aging 29, 280–289 (2008).

    Article  PubMed  Google Scholar 

  40. Whitwell, J. L. et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 75, 1879–1887 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Whitwell, J. L. et al. Imaging signatures of molecular pathology in behavioral variant frontotemporal dementia. J. Mol. Neurosci. 45, 372–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Josephs, K. A. et al. Correlation between antemortem magnetic resonance imaging findings and pathologically confirmed corticobasal degeneration. Arch. Neurol. 61, 1881–1884 (2004).

    PubMed  Google Scholar 

  43. Rankin, K. P. et al. Behavioral variant frontotemporal dementia with corticobasal degeneration pathology: phenotypic comparison to bvFTD with Pick's disease. J. Mol. Neurosci. 45, 594–608 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rohrer, J. D. et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 134, 2565–2581 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Whitwell, J. L. et al. Rates of cerebral atrophy differ in different degenerative pathologies. Brain 130, 1148–1158 (2007).

    Article  PubMed  Google Scholar 

  46. Slowinski, J. et al. MR imaging of brainstem atrophy in progressive supranuclear palsy. J. Neurol. 255, 37–44 (2008).

    Article  PubMed  Google Scholar 

  47. Tsuboi, Y. et al. Atrophy of superior cerebellar peduncle in progressive supranuclear palsy. Neurology 60, 1766–1769 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, S. E. et al. Clinicopathological correlations in corticobasal degeneration. Ann. Neurol. 70, 327–340 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tokumaru, A. M. et al. Imaging–pathologic correlation in corticobasal degeneration. AJNR Am. J. Neuroradiol. 30, 1884–1892 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hassan, A. et al. Symmetric corticobasal degeneration (S-CBD). Parkinsonism Relat. Disord. 16, 208–214 (2010).

    Article  PubMed  Google Scholar 

  51. Schrag, A. et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 54, 697–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Lieberman, A. P. et al. Cognitive, neuroimaging, and pathological studies in a patient with Pick's disease. Ann. Neurol. 43, 259–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Whitwell, J. L. et al. Magnetic resonance imaging signatures of tissue pathology in frontotemporal dementia. Arch. Neurol. 62, 1402–1408 (2005).

    Article  PubMed  Google Scholar 

  54. Piguet, O. et al. Clinical phenotypes in autopsy-confirmed Pick disease. Neurology 76, 253–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Arima, K. et al. Two brothers with frontotemporal dementia and parkinsonism with an N279K mutation of the tau gene. Neurology 54, 1787–1795 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Bird, T. D. et al. A clinical pathological comparison of three families with frontotemporal dementia and identical mutations in the tau gene (P301L). Brain 122, 741–756 (1999).

    Article  PubMed  Google Scholar 

  57. Boeve, B. F. et al. Longitudinal characterization of two siblings with frontotemporal dementia and parkinsonism linked to chromosome 17 associated with the S305N tau mutation. Brain 128, 752–772 (2005).

    Article  PubMed  Google Scholar 

  58. Frank, A. R., Wszolek, Z. K., Jack, C. R. Jr & Boeve, B. F. Distinctive MRI findings in pallidopontonigral degeneration (PPND). Neurology 68, 620–621 (2007).

    Article  PubMed  Google Scholar 

  59. Ghetti, B. et al. In vivo and postmortem clinicoanatomical correlations in frontotemporal dementia and parkinsonism linked to chromosome 17. Neurodegener. Dis. 5, 215–217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Janssen, J. C. et al. Clinical features of frontotemporal dementia due to the intronic tau 10+16 mutation. Neurology 58, 1161–1168 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Tolnay, M. et al. A new case of frontotemporal dementia and parkinsonism resulting from an intron 10 +3-splice site mutation in the tau gene: clinical and pathological features. Neuropathol. Appl. Neurobiol. 26, 368–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. van Swieten, J. C. et al. Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann. Neurol. 46, 617–626 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Rohrer, J. D. et al. Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. Neuroimage 53, 1070–1076 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Spina, S. et al. The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family. Brain 131, 72–89 (2008).

    Article  PubMed  Google Scholar 

  65. Whitwell, J. L. et al. Atrophy patterns in IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M MAPT mutations. Neurology 73, 1058–1065 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Whitwell, J. L. et al. Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN. Neurology 72, 813–820 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Whitwell, J. L. & Josephs, K. A. Imaging in familial frontotemporal lobar degeneration with mutations in MAPT or PGRN. Eur. Neurol. J. 1, 25–31 (2009).

    Google Scholar 

  68. Slowinski, J. L. et al. Brainstem atrophy on routine MR study in pallidopontonigral degeneration. J. Neurol. 256, 827–829 (2009).

    Article  PubMed  Google Scholar 

  69. Soliveri, P. et al. A case of dementia parkinsonism resembling progressive supranuclear palsy due to mutation in the tau protein gene. Arch. Neurol. 60, 1454–1456 (2003).

    Article  PubMed  Google Scholar 

  70. Pickering-Brown, S. M. et al. Inherited frontotemporal dementia in nine British families associated with intronic mutations in the tau gene. Brain 125, 732–751 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Chan, D. et al. The clinical profile of right temporal lobe atrophy. Brain 132, 1287–1298 (2009).

    Article  PubMed  Google Scholar 

  72. Josephs, K. A. et al. Two distinct subtypes of right temporal variant frontotemporal dementia. Neurology 73, 1443–1450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Josephs, K. A. et al. Frontotemporal lobar degeneration and ubiquitin immunohistochemistry. Neuropathol. Appl. Neurobiol. 30, 369–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Lipton, A. M., White, C. L. 3rd & Bigio, E. H. Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration. Acta. Neuropathol. 108, 379–385 (2004).

    Article  PubMed  Google Scholar 

  75. Sampathu, D. M. et al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am. J. Pathol. 169, 1343–1352 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mackenzie, I. R. et al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta. Neuropathol. (Berl.) 112, 539–549 (2006).

    Article  Google Scholar 

  77. Cairns, N. J. et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta. Neuropathol. 114, 5–22 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Josephs, K. A., Whitwell, J. L., Jack, C. R., Parisi, J. E. & Dickson, D. W. Frontotemporal lobar degeneration without lobar atrophy. Arch. Neurol. 63, 1632–1638 (2006).

    Article  PubMed  Google Scholar 

  79. Whitwell, J. L., Jack, C. R. Jr, Senjem, M. L. & Josephs, K. A. Patterns of atrophy in pathologically confirmed FTLD with and without motor neuron degeneration. Neurology 66, 102–104 (2006).

    Article  PubMed  Google Scholar 

  80. Mackenzie, I. R. et al. A harmonized classification system for FTLD-TDP pathology. Acta. Neuropathol. 122, 111–113 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Grossman, M. et al. TDP-43 pathologic lesions and clinical phenotype in frontotemporal lobar degeneration with ubiquitin-positive inclusions. Arch. Neurol. 64, 1449–1454 (2007).

    Article  PubMed  Google Scholar 

  82. Josephs, K. A., Stroh, A., Dugger, B. & Dickson, D. W. Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes. Acta. Neuropathol. 118, 349–358 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Snowden, J., Neary, D. & Mann, D. Frontotemporal lobar degeneration: clinical and pathological relationships. Acta. Neuropathol. 114, 31–38 (2007).

    Article  PubMed  Google Scholar 

  84. Rohrer, J. D. et al. TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology 75, 2204–2211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Whitwell, J. L. et al. Does TDP-43 type confer a distinct pattern of atrophy in frontotemporal lobar degeneration? Neurology 75, 2212–2220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Beck, J. et al. A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain 131, 706–720 (2008).

    Article  PubMed  Google Scholar 

  87. Whitwell, J. L. et al. Voxel-based morphometry in frontotemporal lobar degeneration with ubiquitin-positive inclusions with and without progranulin mutations. Arch. Neurol. 64, 371–376 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Le Ber, I. et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 131, 732–746 (2008).

    Article  PubMed  Google Scholar 

  89. Hodges, J. R. et al. Semantic dementia: demography, familial factors and survival in a consecutive series of 100 cases. Brain 133, 300–306 (2010).

    Article  PubMed  Google Scholar 

  90. Chan, D. et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann. Neurol. 49, 433–442 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Rosen, H. J. et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58, 198–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Kim, E. J. et al. Patterns of MRI atrophy in tau positive and ubiquitin positive frontotemporal lobar degeneration. J. Neurol. Neurosurg. Psychiatry. 78, 1375–1378 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grossman, M. et al. Distinct antemortem profiles in patients with pathologically defined frontotemporal dementia. Arch. Neurol. 64, 1601–1609 (2007).

    Article  PubMed  Google Scholar 

  94. Whitwell, J. L. et al. Voxel-based morphometry in tau-positive and tau-negative frontotemporal lobar degenerations. Neurodegener. Dis. 1, 225–230 (2004).

    Article  PubMed  Google Scholar 

  95. Pereira, J. M. et al. Atrophy patterns in histologic vs clinical groupings of frontotemporal lobar degeneration. Neurology 72, 1653–1660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Whitwell, J. L. et al. MRI correlates of protein deposition and disease severity in postmortem frontotemporal lobar degeneration. Neurodegener. Dis. 6, 106–117 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cairns, N. J. et al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 63, 1376–1384 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Josephs, K. A. et al. Neurofilament inclusion body disease: a new proteinopathy? Brain 126, 2291–2303 (2003).

    Article  PubMed  Google Scholar 

  99. Kusaka, H., Matsumoto, S. & Imai, T. An adult-onset case of sporadic motor neuron disease with basophilic inclusions. Acta. Neuropathol. 80, 660–665 (1990).

    Article  CAS  PubMed  Google Scholar 

  100. Munoz, D. G. et al. FUS pathology in basophilic inclusion body disease. Acta. Neuropathol. 118, 617–627 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Josephs, K. A. et al. Frontotemporal lobar degeneration with ubiquitin-positive, but TDP-43-negative inclusions. Acta. Neuropathol. 116, 159–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Mackenzie, I. R., Foti, D., Woulfe, J. & Hurwitz, T. A. Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 131, 1282–1293 (2008).

    Article  PubMed  Google Scholar 

  103. Josephs, K. A. et al. Caudate atrophy on MRI is a characteristic feature of FTLD-FUS. Eur. J. Neurol. 17, 969–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Seelaar, H. et al. Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration. J. Neurol. 257, 747–753 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Urwin, H. et al. FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta. Neuropathol. 120, 33–41 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rohrer, J. D. et al. The clinical and neuroanatomical phenotype of FUS associated frontotemporal lobar degeneration. J. Neurol. Neurosurg. Psychiatry 82, 1405–1407 (2010).

    Article  PubMed  Google Scholar 

  107. Hu, W. T. et al. Alzheimer's disease and corticobasal degeneration presenting as corticobasal syndrome. Mov. Disord. 24, 1375–1379 (2009).

    Article  PubMed  Google Scholar 

  108. Knibb, J. A., Xuereb, J. H., Patterson, K. & Hodges, J. R. Clinical and pathological characterization of progressive aphasia. Ann. Neurol. 59, 156–165 (2006).

    Article  PubMed  Google Scholar 

  109. Shelley, B. P., Hodges, J. R., Kipps, C. M., Xuereb, J. H. & Bak, T. H. Is the pathology of corticobasal syndrome predictable in life? Mov. Disord. 24, 1593–1599 (2009).

    Article  PubMed  Google Scholar 

  110. Knopman, D. S. et al. Antemortem diagnosis of frontotemporal lobar degeneration. Ann. Neurol. 57, 480–488 (2005).

    Article  PubMed  Google Scholar 

  111. Piguet, O., Halliday, G. M., Creasey, H., Broe, G. A. & Kril, J. J. Frontotemporal dementia and dementia with Lewy bodies in a case-control study of Alzheimer's disease. Int. Psychogeriatr. 21, 688–695 (2009).

    Article  PubMed  Google Scholar 

  112. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Rabinovici, G. D. et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68, 1205–1212 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Engler, H. et al. In vivo amyloid imaging with PET in frontotemporal dementia. Eur. J. Nucl. Med. Mol. Imaging 35, 100–106 (2008).

    Article  PubMed  Google Scholar 

  115. Lehmann, M. et al. Reduced cortical thickness in the posterior cingulate gyrus is characteristic of both typical and atypical Alzheimer's disease. J. Alzheimers. Dis. 20, 587–598 (2010).

    Article  PubMed  Google Scholar 

  116. Whitwell, J. L. et al. Temporoparietal atrophy: a marker of AD pathology independent of clinical diagnosis. Neurobiol. Aging 32, 1531–1541 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Josephs, K. A. et al. Anatomical differences between CBS-corticobasal degeneration and CBS-Alzheimer's disease. Mov. Disord. 25, 1246–1252 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hu, W. T. et al. Multimodal predictors for Alzheimer disease in nonfluent primary progressive aphasia. Neurology 75, 595–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Womack, K. B. et al. Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors. Arch. Neurol. 68, 329–337 (2011).

    Article  PubMed  Google Scholar 

  120. Jellinger, K. A. et al. Four-repeat tauopathy clinically presenting as posterior cortical atrophy: atypical corticobasal degeneration? Acta. Neuropathol. 121, 267–277 (2010).

    Article  PubMed  Google Scholar 

  121. Lehmann, M. et al. Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer's disease. Neurobiol. Aging 32, 1466–1476 (2009).

    Article  PubMed  Google Scholar 

  122. Whitwell, J. L. et al. Imaging correlates of posterior cortical atrophy. Neurobiol. Aging 28, 1051–1061 (2007).

    Article  PubMed  Google Scholar 

  123. Whitwell, J. L. et al. Distinct anatomical subtypes of the behavioral variant of frontotemporal dementia: a cluster analysis study. Brain 132, 2932–2946 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bigio, E. H., Brown, D. F. & White, C. L. 3rd. Progressive supranuclear palsy with dementia: cortical pathology. J. Neuropathol. Exp. Neurol. 58, 359–364 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Ashburner, J. & Friston, K. J. Voxel-based morphometry--the methods. Neuroimage 11, 805–821 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Fodero-Tavoletti, M. T. et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease. Brain 134, 1089–1100 (2011).

    Article  PubMed  Google Scholar 

  128. Whitwell, J. L. et al. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology 77, 866–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hu, W. T. et al. Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 75, 2079–2086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Whitwell, J. L. et al. Neuroimaging signatures of frontotemporal dementia genetics: C90RF72, tau, progranulin and sporadics. Brain http://dx.doi.org/10.1093/brain/aws001

  131. Whitwell, J. L. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J. Neurosci. 29, 9, 661–664 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K. A. Josephs and J. L. Whitwell are funded by NIH grants R01-DC010367, R01-AG037491 and R21-AG38736, and The Dana Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J. L. Whitwell researched data for the article, provided substantial contribution to discussions of the content and wrote the article. K. A. Josephs provided substantial contribution to discussion of the content and reviewed and edited the article before submission.

Corresponding author

Correspondence to Keith A. Josephs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Summary of regional imaging findings from group studies that assessed patterns of atrophy in pathologically or genetically confirmed FTLD-tau diseases (DOC 79 kb)

Supplementary Table 2

Summary of regional imaging findings from group studies that assessed patterns of atrophy in pathologically or genetically confirmed FTLD-TDP or FTLD-FUS diseases (DOC 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitwell, J., Josephs, K. Neuroimaging in frontotemporal lobar degeneration—predicting molecular pathology. Nat Rev Neurol 8, 131–142 (2012). https://doi.org/10.1038/nrneurol.2012.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing