Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuropsychological impairment in amyotrophic lateral sclerosis–frontotemporal spectrum disorder

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a rapid course, characterized by motor neuron dysfunction, leading to progressive disability and death. This Review, which is aimed at neurologists, psychologists and other health professionals who follow evidence-based practice relating to ALS and frontotemporal dementia (FTD), examines the neuropsychological evidence that has driven the reconceptualization of ALS as a spectrum disorder ranging from a pure motor phenotype to ALS–FTD. It focuses on changes in cognition and behaviour, which vary in severity across the spectrum: around 50% individuals with ALS are within the normal range, 15% meet the criteria for ALS–FTD, and the remaining 35% are in the mid-spectrum range with milder and more focal impairments. The cognitive impairments include deficits in verbal fluency, executive functions, social cognition and language, and apathy is the most prevalent behavioural change. The pattern and severity of cognitive and behavioural change predicts underlying regional cerebral dysfunction from brain imaging and post-mortem pathology. Our increased recognition of cognition and behaviour as part of the ALS phenotype has led to the development and standardization of assessment tools, which have been incorporated into research and clinical care. Measuring change over the course of the disease is vital for clinical trials, and neuropsychology is proving to be a biomarker for the earliest preclinical changes.

Key points

  • Cognitive and behavioural impairment in amyotrophic lateral sclerosis (ALS) is heterogeneous and represents a spectrum of changes from ALS to ALS–frontotemporal dementia, also referred to as ALS–frontotemporal spectrum disorder (ALS–FTSD).

  • Neuropsychology has been pivotal in identifying the mid-spectrum range of ALS–FTSD; executive, verbal fluency, social cognition and language impairments are common, and apathy is the most prevalent behavioural change.

  • Cerebral dysfunction underlying these impairments has been shown in both grey and white matter using a range of imaging techniques, and specific cognitive deficits were shown to predict TAR DNA-binding protein 43 pathology in specific brain regions.

  • Assessment tools including the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) and the ALS Cognitive Behavioural Screen (ALS-CBS) are well validated and standardized across different languages and are now incorporated into clinical trials.

  • This Review provides recommendations for neuropsychological assessment and intervention in ALS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Amyotrophic lateral sclerosis–frontotemporal disorder spectrum disorder.
Fig. 2: The dual task paradigm.
Fig. 3: Cortical and subcortical involvement in cognitive and behavioural impairment in amyotrophic lateral sclerosis.

Similar content being viewed by others

References

  1. Marin, B. et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int. J. Epidemiol. 46, 57–74 (2017).

    PubMed  Google Scholar 

  2. Cronin, S., Hardiman, O. & Traynor, B. J. Ethnic variation in the incidence of ALS: a systematic review. Neurology 68, 1002–1007 (2007).

    Article  PubMed  Google Scholar 

  3. Sennfält, S. et al. The path to diagnosis in ALS: delay, referrals, alternate diagnoses, and clinical progression. Amyotroph. Lateral Scler. Frontotemporal Degener. 24, 45–53 (2023).

    Article  PubMed  Google Scholar 

  4. Strong, M. J. et al. Amyotrophic lateral sclerosis – frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 153–174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beeldman, E. et al. The cognitive profile of ALS: a systematic review and meta-analysis update. J. Neurol. Neurosurg. Psychiatry 87, 611–619 (2016).

    Article  PubMed  Google Scholar 

  6. Lomen-Hoerth, C. et al. Are amyotrophic lateral sclerosis patients cognitively normal. Neurology 60, 1094–1097 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Montuschi, A. et al. Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. J. Neurol. Neurosurg. Psychiatry 86, 168–173 (2015).

    Article  PubMed  Google Scholar 

  8. Phukan, J. et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J. Neurol. Neurosurg. Psychiatry 83, 102–108 (2012).

    Article  PubMed  Google Scholar 

  9. Rakowicz, W. P. & Hodges, J. R. Dementia and aphasia in motor neuron disease: an underrecognised association? J. Neurol. Neurosurg. Psychiatry 65, 881–889 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ringholz, G. M. et al. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65, 586–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Murphy, J. et al. Cognitive-behavioral screening reveals prevalent impairment in a large multicenter ALS cohort. Neurology 86, 813–820 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. David, A. S. & Gillham, R. A. Neuropsychological study of motor neuron disease. Psychosomatics 27, 441–445 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Gallassi, R. et al. Cognitive impairment in motor neuron disease. Acta Neurol. Scand. 71, 480–484 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Gallassi, R. et al. Neuropsychological, electroencephalogram and brain computed tomography findings in motor neuron disease. Eur. Neurol. 29, 115–120 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Kew, J. J. M. et al. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis: a neuropsychological and positron emission tomography study. Brain 116, 1399–1423 (1993).

    Article  PubMed  Google Scholar 

  16. Ludolph, A. C. et al. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol. Scand. 85, 81–89 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Talbot, P. R. et al. Inter-relation between ‘classic’ motor neuron disease and frontotemporal dementia: neuropsychological and single photon emission computed tomography study. J. Neurol. Neurosurg. Psychiatry 58, 541–547 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saxon, J. A. et al. Semantic dementia, progressive non-fluent aphasia and their association with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 711–712 (2017).

    Article  PubMed  Google Scholar 

  19. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ossenkoppele, R. et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain 138, 2732–2749 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lima, M. et al. Neuropsychological assessment in the distinction between biomarker defined frontal-variant of Alzheimer’s disease and behavioral-variant of frontotemporal dementia. J. Alzheimers Dis. 91, 1303–1312 (2023).

    Article  PubMed  Google Scholar 

  22. Saxon, J. A. et al. Examining the language and behavioural profile in FTD and ALS-FTD. J. Neurol. Neurosurg. Psychiatry 88, 675–680 (2017).

    Article  PubMed  Google Scholar 

  23. Abrahams, S. et al. Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia 38, 734–747 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Raaphorst, J. et al. The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis. Amyotroph. Lateral Scler. 11, 27–37 (2010).

    Article  PubMed  Google Scholar 

  25. Abrahams, S. et al. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 62, 464–472 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murphy, J., Ahmed, F. & Lomen-Hoerth, C. The UCSF screening exam effectively screens cognitive and behavioral impairment in patients with ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 24–30 (2016).

    Article  Google Scholar 

  27. Abrahams, S., Newton, J., Niven, E., Foley, J. & Bak, T. H. Screening for cognition and behaviour changes in ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 9–14 (2014).

    Article  PubMed  Google Scholar 

  28. Beeldman, E. et al. The verbal fluency index: Dutch normative data for cognitive testing in ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 388–391 (2014).

    Article  PubMed  Google Scholar 

  29. Abrahams, S. et al. Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain 119, 2105–2120 (1996).

    Article  PubMed  Google Scholar 

  30. Abrahams, S. et al. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain 127, 1507–1517 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Abrahams, S. et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J. Neurol. 252, 321–331 (2005).

    Article  PubMed  Google Scholar 

  32. Baddeley, A. D. Working Memory (Oxford Univ. Press, 1986).

  33. Pettit, L. D. et al. Executive deficits not processing speed relates to abnormalities in distinct prefrontal tracts in amyotrophic lateral sclerosis. Brain 136, 3290–3304 (2013).

    Article  PubMed  Google Scholar 

  34. Libon, D. et al. Deficits in concept formation in amyotrophic lateral sclerosis. Neuropsychology 26, 422–429 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lillo, P., Savage, S., Mioshi, E., Kiernan, M. C. & Hodges, J. R. Amyotrophic lateral sclerosis and frontotemporal dementia: a behavioural and cognitive continuum. Amyotroph. Lateral Scler. 13, 102–109 (2012).

    Article  PubMed  Google Scholar 

  36. Girardi, A., Macpherson, S. E. & Abrahams, S. Deficits in emotional and social cognition in amyotrophic lateral sclerosis. Neuropsychology 25, 53–65 (2011).

    Article  PubMed  Google Scholar 

  37. van der Hulst, E. J., Bak, T. H. & Abrahams, S. Impaired affective and cognitive theory of mind and behavioural change in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 86, 1208–1215 (2015).

    Article  PubMed  Google Scholar 

  38. Cavallo, M. et al. Evidence of social understanding impairment in patients with amyotrophic lateral sclerosis. PLoS ONE 6, e25948 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bora, E. Meta-analysis of social cognition in amyotrophic lateral sclerosis. Cortex 88, 1–7 (2017).

    Article  PubMed  Google Scholar 

  40. Lillo, P. et al. Inside minds, beneath diseases: social cognition in amyotrophic lateral sclerosis-frontotemporal spectrum disorder. J. Neurol. Neurosurg. Psychiatry 91, 1279–1282 (2020).

    Article  PubMed  Google Scholar 

  41. Palumbo, F. et al. Social cognition deficits in amyotrophic lateral sclerosis: a pilot cross-sectional population-based study. Eur. J. Neurol. 29, 2211–2219 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Burke, T. et al. Measurement of social cognition in amyotrophic lateral sclerosis: a population based study. PLoS ONE 11, e0160850 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Aiello, E. N. et al. Validity and diagnostics of the Reading the Mind in the Eyes Test (RMET) in non-demented amyotrophic lateral sclerosis (ALS) patients. Front. Psychol. 13, 1031841 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Burke, T. et al. The reading the mind in the eyes test short form (A & B): validation and outcomes in an amyotrophic lateral sclerosis cohort. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 380–388 (2020).

    Article  PubMed  Google Scholar 

  45. Trojsi, F. et al. Resting state fMRI correlates of theory of mind impairment in amyotrophic lateral sclerosis. Cortex 97, 1–16 (2017).

    Article  PubMed  Google Scholar 

  46. Lulé, D. et al. Clinicoanatomical substrates of selfish behaviour in amyotrophic lateral sclerosis – an observational cohort study. Cortex 146, 261–270 (2022).

    Article  PubMed  Google Scholar 

  47. Taylor, L. J. et al. Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? J. Neurol. Neurosurg. Psychiatry 84, 494–498 (2013).

    Article  PubMed  Google Scholar 

  48. Pinto-Grau, M. et al. Patterns of language impairment in early amyotrophic lateral sclerosis. Neurol. Clin. Pract. 11, e634–e644 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Burke, T. et al. Visual encoding, consolidation, and retrieval in amyotrophic lateral sclerosis: executive function as a mediator, and predictor of performance. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 193–201 (2017).

    Article  PubMed  Google Scholar 

  50. Iazzolino, B. et al. Differential neuropsychological profile of patients with amyotrophic lateral sclerosis with and without C9orf72 mutation. Neurology 96, e141–e152 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Raaphorst, J. et al. Prose memory impairment in amyotrophic lateral sclerosis patients is related to hippocampus volume. Eur. J. Neurol. 22, 547–554 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Christidi, F. et al. Uncinate fasciculus microstructure and verbal episodic memory in amyotrophic lateral sclerosis: a diffusion tensor imaging and neuropsychological study. Brain Imaging Behav. 8, 497–505 (2014).

    Article  PubMed  Google Scholar 

  53. Lulé, D. et al. Cognitive phenotypes of sequential staging in amyotrophic lateral sclerosis. Cortex 101, 163–171 (2018).

    Article  PubMed  Google Scholar 

  54. Crockford, C. et al. ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS. Neurology 91, e1370–e1380 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gibbons, Z. C. et al. Behaviour in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 9, 67–74 (2008).

    Article  PubMed  Google Scholar 

  56. Lillo, P. et al. How common are behavioural changes in amyotrophic lateral sclerosis? Amyotroph. Lateral Scler. 12, 45–51 (2011).

    Article  PubMed  Google Scholar 

  57. Radakovic, R. & Abrahams, S. Multidimensional apathy: evidence from neurodegenerative disease. Curr. Opin. Behav. Sci. 22, 42–49 (2018).

    Article  Google Scholar 

  58. Radakovic, R. et al. Multidimensional apathy in ALS: validation of the dimensional apathy scale. J. Neurol. Neurosurg. Psychiatry 87, 663–669 (2016).

    Article  PubMed  Google Scholar 

  59. Caga, J. et al. Apathy is associated with parietal cortical-subcortical dysfunction in ALS. Cortex 145, 341–349 (2021).

    Article  PubMed  Google Scholar 

  60. Tsujimoto, M. et al. Behavioral changes in early ALS correlate with voxel-based morphometry and diffusion tensor imaging. J. Neurol. Sci. 307, 34–40 (2011).

    Article  PubMed  Google Scholar 

  61. Femiano, C. et al. Apathy is correlated with widespread diffusion tensor imaging (DTI) impairment in amyotrophic lateral sclerosis. Behav. Neurol. 2018, 2635202 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gregory, J. M. et al. Executive, language and fluency dysfunction are markers of localised TDP-43 cerebral pathology in non-demented ALS. J. Neurol. Neurosurg. Psychiatry 91, 149–157 (2020).

    Article  PubMed  Google Scholar 

  63. Radakovic, R. et al. Multidimensional apathy and executive dysfunction in amyotrophic lateral sclerosis. Cortex 94, 142–151 (2017).

    Article  PubMed  Google Scholar 

  64. Olney, R. K. et al. The effects of executive and behavioral dysfunction on the course of ALS. Neurology 65, 1774–1777 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Burke, T., Elamin, M., Galvin, M., Hardiman, O. & Pender, N. Caregiver burden in amyotrophic lateral sclerosis: a cross-sectional investigation of predictors. J. Neurol. 262, 1526–1532 (2015).

    Article  PubMed  Google Scholar 

  66. Chio, A. et al. Neurobehavioral symptoms in ALS are negatively related to caregivers’ burden and quality of life. Eur. J. Neurol. 17, 1298–1303 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Hsieh, S., Schubert, S., Hoon, C., Mioshi, E. & Hodges, J. R. Validation of the Addenbrooke’s Cognitive Examination III in frontotemporal dementia and Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 36, 242–250 (2013).

    Article  PubMed  Google Scholar 

  68. Woolley, S. C. et al. Detecting frontotemporal dysfunction in ALS: utility of the ALS Cognitive Behavioral Screen (ALS-CBS). Amyotroph. Lateral Scler. 11, 303–311 (2010).

    Article  PubMed  Google Scholar 

  69. De Icaza Valenzuela, M. M. et al. Validation of The Edinburgh Cognitive and Behavioural ALS Screen (ECAS) in behavioural variant frontotemporal dementia and Alzheimer’s disease. Int. J. Geriatr. Psychiatry 36, 1576–1587 (2021).

    Article  PubMed  Google Scholar 

  70. Kourtesis, P. et al. The Edinburgh cognitive and behavioral amyotrophic lateral sclerosis screen (ECAS): sensitivity in differentiating between ALS and Alzheimer’s disease in a Greek population. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 78–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Kourtesis, P., Margioti, E., Demenega, C., Christidi, F. & Abrahams, S. A comparison of the Greek ACE-III, M-ACE, ACE-R, MMSE, and ECAS in the Assessment and Identification of Alzheimer’s disease. J. Int. Neuropsychol. Soc. 26, 825–834 (2020).

    Article  PubMed  Google Scholar 

  72. Lulé, D. et al. Screening for cognitive function in complete immobility using brain–machine interfaces: a proof of principle study. Front. Neurosci. 12, 517 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Niven, E. et al. Validation of the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen (ECAS): a cognitive tool for motor disorders. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 172–179 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Aiello, E. N. et al. The diagnostic value of the Italian version of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS). Amyotroph. Lateral Scler. Frontotemporal Degener. 23, 527–531 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Pinto-Grau, M. et al. Screening for cognitive dysfunction in ALS: validation of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) using age and education adjusted normative data. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 99–106 (2017).

    Article  PubMed  Google Scholar 

  76. Poletti, B. et al. The validation of the Italian Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Amyotroph. Lateral Scler. Frontotemporal Degener. 17, 489–498 (2016).

    Article  PubMed  Google Scholar 

  77. Lulé, D. et al. The Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen: a cross-sectional comparison of established screening tools in a German-Swiss population. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 16–23 (2015).

    Article  PubMed  Google Scholar 

  78. Saxon, J. A. et al. The Edinburgh Cognitive and Behavioral ALS Screen (ECAS) in frontotemporal dementia. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 606–613 (2020).

    Article  PubMed  Google Scholar 

  79. Christodoulou, G. et al. Telephone based cognitive-behavioral screening for frontotemporal changes in patients with amyotrophic lateral sclerosis (ALS). Amyotroph. Lateral Scler. Frontotemporal Degener. 17, 482–488 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kacem, I. et al. Arabic adaptation of the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis screen (ECAS-AR). Rev. Neurol. 178, 817–825 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Watanabe, Y., Ogino, M., Ichikawa, H., Hanajima, R. & Nakashima, K. The Edinburgh Cognitive and Behavioural ALS Screen (ECAS) for Japanese ALS and FTD patients. Amyotroph. Lateral Scler. Frontotemporal Degener. 22, 66–72 (2021).

    Article  PubMed  Google Scholar 

  82. Albertyn, C. H. et al. Adaptation and norming of the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis screen (ECAS) for three language groups in South Africa. Amyotroph. Lateral Scler. Frontotemporal Degener. 23, 532–541 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Mora, J. S. et al. Spanish adaptation of the Edinburgh Cognitive and Behavioral Amyotrophic Lateral Sclerosis screen (ECAS). Amyotroph. Lateral Scler. Frontotemporal Degener. 19, 74–79 (2018).

    Article  PubMed  Google Scholar 

  84. Elamin, M. et al. Identifying behavioural changes in ALS: validation of the Beaumont Behavioural Inventory (BBI). Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 68–73 (2017).

    Article  PubMed  Google Scholar 

  85. Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Radakovic, R., Davenport, R., Starr, J. M. & Abrahams, S. Apathy dimensions in Parkinson’s disease. Int. J. Geriatr. Psychiatry 33, 151–158 (2018).

    Article  PubMed  Google Scholar 

  87. Radakovic, R., Starr, J. M. & Abrahams, S. A novel assessment and profiling of multidimensional apathy in Alzheimer’s disease. J. Alzheimers Dis. 60, 57–67 (2017).

    Article  PubMed  Google Scholar 

  88. Trojsi, F. et al. Microstructural correlates of Edinburgh Cognitive and Behavioural ALS Screen (ECAS) changes in amyotrophic lateral sclerosis. Psychiatry Res. Neuroimaging 288, 67–75 (2019).

    Article  PubMed  Google Scholar 

  89. Chenji, S. et al. Neuroanatomical associations of the Edinburgh Cognitive and Behavioural ALS screen (ECAS). Brain imaging Behav. 15, 1641–1654 (2021).

    Article  PubMed  Google Scholar 

  90. Keller, J. et al. Functional reorganization during cognitive function tasks in patients with amyotrophic lateral sclerosis. Brain Imaging Behav. 12, 771–784 (2018).

    Article  PubMed  Google Scholar 

  91. Higashihara, M. et al. Association of cortical hyperexcitability and cognitive impairment in patients with amyotrophic lateral sclerosis. Neurology 96, e2090–e2097 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Verde, F., Otto, M. & Silani, V. Neurofilament light chain as biomarker for amyotrophic lateral sclerosis and frontotemporal dementia. Front. Neurosci. 15, 679199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Scherling, C. S. et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann. Neurol. 75, 116–126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Illán-Gala, I. et al. CSF sAPPβ, YKL-40, and NfL along the ALS-FTD spectrum. Neurology 91, e1619–e1628 (2018).

    Article  PubMed  Google Scholar 

  95. van der Ende, E. L. et al. Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurol. 18, 1103–1111 (2019).

    Article  PubMed  Google Scholar 

  96. Chiò, A. et al. Cognitive impairment across ALS clinical stages in a population-based cohort. Neurology 93, e984–e994 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Roche, J. C. et al. A proposed staging system for amyotrophic lateral sclerosis. Brain 135, 847–852 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Beeldman, E. et al. Progression of cognitive and behavioural impairment in early amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 91, 779–780 (2020).

    Article  PubMed  Google Scholar 

  99. Bersano, E. et al. Decline of cognitive and behavioral functions in amyotrophic lateral sclerosis: a longitudinal study. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 373–379 (2020).

    Article  PubMed  Google Scholar 

  100. Elamin, M. et al. Cognitive changes predict functional decline in ALS: a population-based longuitudinal study. Neurology 80, 1590–1596 (2013).

    Article  PubMed  Google Scholar 

  101. Elamin, M. et al. Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology 76, 1263–1269 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Ye, S., Jin, P., Chen, L., Zhang, N. & Fan, D. Prognosis of amyotrophic lateral sclerosis with cognitive and behavioural changes based on a sixty-month longitudinal follow-up. PLoS ONE 16, e0253279 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Aiello, E. N. et al. Reliable change indices for the Italian Edinburgh Cognitive and Behavioral ALS Screen (ECAS). Amyotroph. Lateral Scler. Frontotemporal Degener. 24, 339–342 (2022).

    Article  PubMed  Google Scholar 

  104. Crockford, C. et al. Development of parallel versions of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 115–123 (2015).

    Google Scholar 

  105. Crockford, C. et al. Measuring reliable change in cognition using the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Amyotroph. Lateral Scler. Frontotemporal Degener. 19, 65–73 (2018).

    Article  PubMed  Google Scholar 

  106. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Byrne, S. et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol. 11, 232–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chiò, A. et al. Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. Brain 135, 784–793 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lulé, D. E. et al. Deficits in verbal fluency in presymptomatic C9orf72 mutation gene carriers – a developmental disorder. J. Neurol. Neurosurg. Psychiatry 91, 1195–1200 (2020).

    Article  PubMed  Google Scholar 

  111. Benatar, M., Turner, M. R. & Wuu, J. Defining pre-symptomatic amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 303–309 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Barker, M. S. et al. Proposed research criteria for prodromal behavioural variant frontotemporal dementia. Brain 145, 1079–1097 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lingor, P. et al. ROCK-ALS: protocol for a randomized, placebo-controlled, double-blind phase IIa trial of safety, tolerability and efficacy of the Rho kinase (ROCK) inhibitor fasudil in amyotrophic lateral sclerosis. Front. Neurol. 10, 293 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Henderson, R. D. et al. Phase 1b dose-escalation, safety, and pharmacokinetic study of IC14, a monoclonal antibody against CD14, for the treatment of amyotrophic lateral sclerosis. Medicine 100, e27421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beswick, E. et al. A systematic review of neuropsychiatric and cognitive assessments used in clinical trials for amyotrophic lateral sclerosis. J. Neurol. 268, 4510–4521 (2021).

    Article  PubMed  Google Scholar 

  116. National Institute for Health and Care Excellence. Motor neurone disease: assessment and management. NICE https://www.nice.org.uk/guidance/ng42 (2019).

  117. Gray, D. & Abrahams, S. International evaluation of current practices in cognitive assessment for motor neurone disease. Br. J. Neurosci. Nurs. 18, 38–44 (2022).

    Article  Google Scholar 

  118. Hodgins, F., Bell, S. & Abrahams, S. Factors influencing the implementation of cognitive and behavioural screening in motor neurone disease. Br. J. Neurosci. Nurs. 13, 115–119 (2018).

    Article  Google Scholar 

  119. Hodgins, F., Mulhern, S. & Abrahams, S. The clinical impact of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) and neuropsychological intervention in routine ALS care. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 92–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Crockford, C., Stockton, C. & Abrahams, S. Clinicians’ attitudes towards cognitive and behavioural screening in motor neurone disease. Br. J. Neurosci. Nurs. 13, 116–123 (2017).

    Article  Google Scholar 

  121. Gould, R. L. et al. A randomised controlled trial of acceptance and commitment therapy plus usual care compared to usual care alone for improving psychological health in people with motor neuron disease (COMMEND): study protocol. BMC Neurol. 22, 431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McMackin, R. et al. Cognitive network hyperactivation and motor cortex decline correlate with ALS prognosis. Neurobiol. Aging 104, 57–70 (2021).

    Article  PubMed  Google Scholar 

  123. Ratti, E. et al. Regional prefrontal cortical atrophy predicts specific cognitive-behavioral symptoms in ALS-FTD. Brain Imaging Behav. 15, 2540–2551 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Witiuk, K. et al. Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task. J. Neurosci. 34, 14260–14271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Canosa, A. et al. Brain metabolic correlates of apathy in amyotrophic lateral sclerosis: an 18F-FDG-positron emission tomography stud. Eur. J. Neurol. 28, 745–753 (2021).

    Article  PubMed  Google Scholar 

  126. Carluer, L. et al. Neural substrate of cognitive theory of mind impairment in amyotrophic lateral sclerosis. Cortex 65, 19–30 (2015).

    Article  PubMed  Google Scholar 

  127. Castelnovo, V. et al. Progression of brain functional connectivity and frontal cognitive dysfunction in ALS. Neuroimage Clin. 28, 102509 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wicks, P. et al. Neuronal loss associated with cognitive performance in amyotrophic lateral sclerosis: an (11C)-flumazenil PET study. Amyotroph. Lateral Scler. 9, 43–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Yabe, I. et al. Writing errors in ALS related to loss of neuronal integrity in the anterior cingulate gyrus. J. Neurol. Sci. 315, 55–59 (2012).

    Article  PubMed  Google Scholar 

  130. Tan, H. H. G. et al. MRI clustering reveals three ALS subtypes with unique neurodegeneration patterns. Ann. Neurol. 92, 1030–1045 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Canosa, A. et al. 18F-FDG-PET correlates of cognitive impairment in ALS. Neurology 86, 44–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Ye, S. et al. Cortical thickness and cognitive impairment in patients with amyotrophic lateral sclerosis. Beijing Da Xue Xue Bao Yi Xue Ban. 54, 1158–1162 (2022).

    CAS  PubMed  Google Scholar 

  133. Consonni, M., Cappa, S. F., Dalla Bella, E., Contarino, V. E. & Lauria, G. Cortical correlates of behavioural change in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 90, 380–386 (2019).

    Article  PubMed  Google Scholar 

  134. Trojsi, F. et al. Motor and extramotor neurodegeneration in amyotrophic lateral sclerosis: a 3T high angular resolution diffusion imaging (HARDI) study. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 553–561 (2013).

    Article  PubMed  Google Scholar 

  135. Agosta, F. et al. Structural brain correlates of cognitive and behavioral impairment in MND. Hum. Brain Mapp. 37, 1614–1626 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Crespi, C. et al. Microstructural white matter correlates of emotion recognition impairment in amyotrophic lateral sclerosis. Cortex 53, 1–8 (2014).

    Article  PubMed  Google Scholar 

  137. Woolley, S. C., Zhang, Y., Schuff, N., Weiner, M. W. & Katz, J. S. Neuroanatomical correlates of apathy in ALS using 4 Tesla diffusion tensor MRI. Amyotroph. Lateral Scler. 12, 52–58 (2011).

    Article  PubMed  Google Scholar 

  138. Goldstein, L. H. & Abrahams, S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol. 12, 368–380 (2013).

    Article  PubMed  Google Scholar 

  139. Pender, N., Pinto-Grau, M. & Hardiman, O. Cognitive and behavioural impairment in amyotrophic lateral sclerosis. Curr. Opin. Neurol. 33, 649–654 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work based at the University of Edinburgh focusing on the Edinburgh Cognitive and Behavioural ALS Screen and the Dimensional Apathy Scale was funded by the Motor Neurone Disease Association, MND Scotland and the ALS Association. The work described at Edinburgh was undertaken with the help of the MND-Cognition research team T. Bak, J. Newton, R. Radakovic, C. Crockford, C. McHutchison, D. Gray, L. Pettitt, D. Van Der Hulst, A. Girardi, M. Cavallo and E. Niven. The work is also supported by the Euan Macdonald Centre for MND Research and the Anne Rowling Regenerative Neurology Clinic. In addition to the above the author thanks her collaborators including O. Hardiman, A. Al Chalabi, Z. Simmons, M. Benatar,  S. MacPherson, S. Pal, S. Chandran, L. Goldstein and N. Leigh. Most importantly, the author thanks all the people with neurodegenerative disease and their families who have helped with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Abrahams.

Ethics declarations

Competing interests

S.A. is one of the authors of the Edinburgh Cognitive and Behavioural ALS Screen and the Dimensional Apathy Scale.

Peer review

Peer review information

Nature Reviews Neurology thanks V. Silani, M. Strong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahams, S. Neuropsychological impairment in amyotrophic lateral sclerosis–frontotemporal spectrum disorder. Nat Rev Neurol 19, 655–667 (2023). https://doi.org/10.1038/s41582-023-00878-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00878-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing