Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Frontotemporal lobar degeneration

Abstract

Frontotemporal lobar degeneration (FTLD) is one of the most common causes of early-onset dementia and presents with early social–emotional–behavioural and/or language changes that can be accompanied by a pyramidal or extrapyramidal motor disorder. About 20–25% of individuals with FTLD are estimated to carry a mutation associated with a specific FTLD pathology. The discovery of these mutations has led to important advances in potentially disease-modifying treatments that aim to slow progression or delay disease onset and has improved understanding of brain functioning. In both mutation carriers and those with sporadic disease, the most common underlying diagnoses are linked to neuronal and glial inclusions containing tau (FTLD-tau) or TDP-43 (FTLD-TDP), although 5–10% of patients may have inclusions containing proteins from the FUS–Ewing sarcoma–TAF15 family (FTLD-FET). Biomarkers definitively identifying specific pathological entities in sporadic disease have been elusive, which has impeded development of disease-modifying treatments. Nevertheless, disease-monitoring biofluid and imaging biomarkers are becoming increasingly sophisticated and are likely to serve as useful measures of treatment response during trials of disease-modifying treatments. Symptomatic trials using novel approaches such as transcranial direct current stimulation are also beginning to show promise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FTD syndromes and associated pathology.
Fig. 2: Prevalence of frontotemporal lobar degeneration-associated syndromes.
Fig. 3: Geographic distribution of genetic subtypes of frontotemporal lobar degeneration.
Fig. 4: Frontotemporal lobar degeneration pathology.
Fig. 5: Characteristic patterns of neurodegeneration in different FTD syndromes.

Similar content being viewed by others

References

  1. Cairns, N. J. et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol. 114, 5–22 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Robinson, J. L. et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 141, 2181–2193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goldman, J. S. et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology 65, 1817–1819 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Wood, E. M. et al. Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA Neurol. 70, 1411–1417 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mol, M. O. et al. Underlying genetic variation in familial frontotemporal dementia: sequencing of 198 patients. Neurobiol. Aging 97, 148.e9–148.e16 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Al-Chalabi, A. & Lewis, C. M. Modelling the effects of penetrance and family size on rates of sporadic and familial disease. Hum. Hered. 71, 281–288 (2011).

    Article  PubMed  Google Scholar 

  7. van Blitterswijk, M. et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 3776–3784 (2012).

    Article  PubMed  Google Scholar 

  8. Boeve, B. F. et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain 135, 765–783 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Woolley, J. D., Khan, B. K., Murthy, N. K., Miller, B. L. & Rankin, K. P. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J. Clin. Psychiatry 72, 126–133 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Townley, R. A. et al. Progressive dysexecutive syndrome due to Alzheimer’s disease: a description of 55 cases and comparisons to other clinical AD phenotypes. Brain Commun. 2, fcaa068 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ossenkoppele, R. et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain 138, 2732–2749 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hornberger, M., Shelley, B. P., Kipps, C. M., Piguet, O. & Hodges, J. R. Can progressive and non-progressive behavioural variant frontotemporal dementia be distinguished at presentation? J. Neurol. Neurosurg. Psychiatry 80, 591–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Steketee, R. M. E. et al. Structural and functional brain abnormalities place phenocopy frontotemporal dementia (FTD) in the FTD spectrum. NeuroImage Clin. 11, 595–605 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Valente, E. S. et al. Phenocopy syndrome of behavioral variant frontotemporal dementia: a systematic review. Alzheimers Res. Ther. 11, 30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kvello-Alme, M., Bråthen, G., White, L. R. & Sando, S. B. The prevalence and subtypes of young onset dementia in central Norway: a population-based study. J. Alzheimers Dis. 69, 479–487 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Coyle-Gilchrist, I. T. S. et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 86, 1736–1743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knopman, D. S. & Roberts, R. O. Estimating the number of persons with frontotemporal lobar degeneration in the US population. J. Mol. Neurosci. 45, 330–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turcano, P. et al. Incidence of frontotemporal disorders in Olmsted County: a population‐based study. Alzheimers Dement. 16, 482–490 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Logroscino, G. et al. Incidence of frontotemporal lobar degeneration in Italy. Neurology 92, e2355–e2363 (2019).

    Article  PubMed  Google Scholar 

  22. Niu, H., Álvarez-Álvarez, I., Guillén-Grima, F. & Aguinaga-Ontoso, I. Prevalence and incidence of Alzheimer’s disease in Europe: a meta-analysis. Neurol. Engl. Ed. 32, 523–532 (2017).

    CAS  Google Scholar 

  23. Moore, K. M. et al. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurol. 19, 145–156 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Kansal, K. et al. Survival in frontotemporal dementia phenotypes: a meta-analysis. Dement. Geriatr. Cogn. Disord. 41, 109–122 (2016).

    Article  PubMed  Google Scholar 

  25. Graff‐Radford, N. R., Besser, L. M., Crook, J. E., Kukull, W. A. & Dickson, D. W. Neuropathologic differences by race from the National Alzheimer’s Coordinating Center. Alzheimers Dement. 12, 669–677 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fukuhara, R. et al. Family history of frontotemporal lobar degeneration in Asia – an international multi-center research. Int. Psychogeriatr. 26, 1967–1971 (2014).

    Article  PubMed  Google Scholar 

  27. Mackenzie, I. R. A. et al. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol. 117, 15–18 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi, Y. et al. Structure-based classification of tauopathies. Nature 598, 359–363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Narasimhan, S. et al. Pathological tau strains from human brains recapitulate the diversity of tauopathies in nontransgenic mouse brain. J. Neurosci. 37, 11406–11423 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dickson, D. W., Kouri, N., Murray, M. E. & Josephs, K. A. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J. Mol. Neurosci. 45, 384–389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mckee, A. C., Abdolmohammadi, B. & Stein, T. D. in Sports Neurology (eds Hainline, B. & Stern, R. A.) 297–307 (Elsevier, 2018). [Series Eds Aminoff, M. J., Boller, F. & Swaab, D. F. Handbook of Clinical Neurology Vol. 158].

  33. Nana, A. L. et al. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol. 137, 27–46 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mackenzie, I. R. A. et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 122, 111–113 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee, E. B. et al. Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol. 134, 65–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neumann, M., Lee, E. B. & Mackenzie, I. R. Frontotemporal lobar degeneration TDP-43-immunoreactive pathological subtypes: clinical and mechanistic significance. Adv. Exp. Med. Biol. 1281, 201–217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arseni, D. et al. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 601, 139–143 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Andersson, M. K. et al. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol. 9, 37 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Neumann, M. et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132, 2922–2931 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lashley, T. et al. A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. Brain 134, 2548–2564 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mackenzie, I. R. A. et al. Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol. 121, 207–218 (2010).

    Article  PubMed  Google Scholar 

  42. Neumann, M. et al. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134, 2595–2609 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mackenzie, I. R. A. & Neumann, M. Fused in sarcoma neuropathology in neurodegenerative disease. Cold Spring Harb. Perspect. Med. 7, a024299 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barbier, M. et al. SLITRK2, an X-linked modifier of the age at onset in C9orf72 frontotemporal lobar degeneration. Brain 144, 2798–2811 (2021).

    Article  PubMed  Google Scholar 

  50. Gallagher, M. D. et al. TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol. 127, 407–418 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pottier, C. et al. Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathol. 137, 879–899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, M. et al. A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain 141, 2895–2907 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Forrest, S. L. et al. Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain 141, 521–534 (2017).

    Article  PubMed Central  Google Scholar 

  54. Rademakers, R., Cruts, M. & van Broeckhoven, C. The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum. Mutat. 24, 277–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Strang, K. H. et al. Distinct differences in prion-like seeding and aggregation between Tau protein variants provide mechanistic insights into tauopathies. J. Biol. Chem. 293, 2408–2421 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Strang, K. H., Golde, T. E. & Giasson, B. I. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab. Invest. 99, 912–928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yokoyama, J. S. et al. Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathol. 133, 825–837 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Farg, M. A. et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum. Mol. Genet. 26, 4093–4094 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Blitterswijk, M., DeJesus-Hernandez, M. & Rademakers, R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia. Curr. Opin. Neurol. 25, 689–700 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gendron, T. F. & Petrucelli, L. Disease mechanisms of C9ORF72 repeat expansions. Cold Spring Harb. Perspect. Med. 8, a024224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Smith, K. R. et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am. J. Hum. Genet. 90, 1102–1107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ghetti, B., Boeve, B. & Buratti, E. (eds) Frontotemporal Dementias: Emerging Milestones of the 21st Century Vol. 1281 (Springer, 2021).

  63. Van Deerlin, V. M. et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat. Genet. 42, 234–239 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ferrari, R. et al. Assessment of common variability and expression quantitative trait loci for genome-wide associations for progressive supranuclear palsy. Neurobiol. Aging 35, 1514.e1–1514.e12 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Ferrari, R., Manzoni, C. & Hardy, J. Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues. Neurobiol. Aging 78, 98–110 (2019).

    Article  PubMed  Google Scholar 

  66. van Rooij, J. et al. Somatic TARDBP variants as a cause of semantic dementia. Brain 143, 3827–3841 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ravits, J. M. & La Spada, A. R. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73, 805–811 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gardner, R. C. et al. Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann. Neurol. 73, 603–616 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brown, J. A. et al. Patient-tailored, connectivity-based forecasts of spreading brain atrophy. Neuron 104, 856–868.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, E.-J. et al. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb. Cortex 22, 251–259 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Seeley, W. W. et al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann. Neurol. 60, 660–667 (2006).

    Article  PubMed  Google Scholar 

  74. Pineda, S. S. et al. Single-cell profiling of the human primary motor cortex in ALS and FTLD. Preprint at bioRxiv https://doi.org/10.1101/2021.07.07.451374 (2021).

  75. Lin, L. C. et al. Preferential tau aggregation in von Economo neurons and fork cells in frontotemporal lobar degeneration with specific MAPT variants. Acta Neuropathol. Commun. 7, 159 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Genç, B. & Özdinler, P. H. Moving forward in clinical trials for ALS: motor neurons lead the way please. Drug Discov. Today 19, 441–449 (2014).

    Article  PubMed  Google Scholar 

  77. Frost, B., Ollesch, J., Wille, H. & Diamond, M. I. Conformational diversity of wild-type tau fibrils specified by templated conformation change. J. Biol. Chem. 284, 3546–3551 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim, E.-J. et al. Evidence of corticofugal tau spreading in patients with frontotemporal dementia. Acta Neuropathol. 139, 27–43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Porta, S. et al. Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat. Commun. 9, 4220 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. de Calignon, A. et al. Propagation of Tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Frost, B. & Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. 11, 155–159 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Palop, J. J., Chin, J. & Mucke, L. A network dysfunction perspective on neurodegenerative diseases. Nature 443, 768–773 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Fu, H., Hardy, J. & Duff, K. E. Selective vulnerability in neurodegenerative diseases. Nat. Neurosci. 21, 1350–1358 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen-Plotkin, A. S. et al. Genetic and clinical features of progranulin-associated frontotemporal lobar degeneration. Arch. Neurol. 68, 488–497 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kelley, B. J. et al. Prominent phenotypic variability associated with mutations in progranulin. Neurobiol. Aging 30, 739–751 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Dodich, A., Crespi, C., Santi, G. C., Cappa, S. F. & Cerami, C. Evaluation of discriminative detection abilities of social cognition measures for the diagnosis of the behavioral variant of frontotemporal dementia: a systematic review. Neuropsychol. Rev. 31, 251–266 (2020).

    Article  PubMed  Google Scholar 

  89. Van den Stock, J. et al. Current potential for clinical optimization of social cognition assessment for frontotemporal dementia and primary psychiatric disorders. Neuropsychol. Rev. 33, 544–550 (2023).

    Article  PubMed  Google Scholar 

  90. Barker, M. S. et al. Proposed research criteria for prodromal behavioural variant frontotemporal dementia. Brain 145, 1079–1097 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Healey, M. et al. More than words: extra-Sylvian neuroanatomic networks support indirect speech act comprehension and discourse in behavioral variant frontotemporal dementia. Front. Hum. Neurosci. 14, 598131 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rankin, K. P., Kramer, J. H. & Miller, B. L. Patterns of cognitive and emotional empathy in frontotemporal lobar degeneration. Cogn. Behav. Neurol. 18, 28–36 (2005).

    Article  PubMed  Google Scholar 

  93. Wittenberg, D. et al. The early neuropsychological and behavioral characteristics of frontotemporal dementia. Neuropsychol. Rev. 18, 91–102 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Devenney, E. M. et al. The neural correlates and clinical characteristics of psychosis in the frontotemporal dementia continuum and the C9orf72 expansion. NeuroImage Clin. 13, 439–445 (2017).

    Article  PubMed  Google Scholar 

  95. Kumfor, F. et al. Examining the presence and nature of delusions in Alzheimer’s disease and frontotemporal dementia syndromes. Int. J. Geriatr. Psychiatry 37, 5692 (2022).

    Article  Google Scholar 

  96. Irwin, D. J. et al. Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. Brain 141, 288–301 (2017).

    Article  PubMed Central  Google Scholar 

  97. Mesulam, M.-M., Wieneke, C., Thompson, C., Rogalski, E. & Weintraub, S. Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain 135, 1537–1553 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sajjadi, S. A., Patterson, K., Arnold, R. J., Watson, P. C. & Nestor, P. J. Primary progressive aphasia: a tale of two syndromes and the rest. Neurology 78, 1670–1677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wicklund, M. R. et al. Quantitative application of the primary progressive aphasia consensus criteria. Neurology 82, 1119–1126 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hodges, J. R. & Patterson, K. Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol. 6, 1004–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Cho, S. et al. Automated analysis of lexical features in frontotemporal degeneration. Cortex 137, 215–231 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Cousins, K. A. Q., Ash, S., Olm, C. A. & Grossman, M. Longitudinal changes in semantic concreteness in semantic variant primary progressive aphasia (svPPA). eNeuro 5, ENEURO.0197-18.2018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cousins, K. A. Q., Ash, S., Irwin, D. J. & Grossman, M. Dissociable substrates underlie the production of abstract and concrete nouns. Brain Lang. 165, 45–54 (2017).

    Article  PubMed  Google Scholar 

  104. Bonner, M. F., Price, A. R., Peelle, J. E. & Grossman, M. Semantics of the visual environment encoded in parahippocampal cortex. J. Cogn. Neurosci. 28, 361–378 (2016).

    Article  PubMed  Google Scholar 

  105. Hoffman, P., Jefferies, E., Ehsan, S., Jones, R. W. & Lambon Ralph, M. A. Semantic memory is key to binding phonology: converging evidence from immediate serial recall in semantic dementia and healthy participants. Neuropsychologia 47, 747–760 (2009).

    Article  PubMed  Google Scholar 

  106. Younes, K. et al. Right temporal degeneration and socioemotional semantics: semantic behavioural variant frontotemporal dementia. Brain 145, 4080–4096 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Josephs, K. A. et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 122, 137–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Spinelli, E. G. et al. Typical and atypical pathology in primary progressive aphasia variants: pathology in PPA variants. Ann. Neurol. 81, 430–443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mesulam, M.-M. et al. Primary progressive aphasia and the evolving neurology of the language network. Nat. Rev. Neurol. 10, 554–569 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gunawardena, D. et al. Why are patients with progressive nonfluent aphasia nonfluent? Neurology 75, 588–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wilson, S. M. et al. Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. J. Neurosci. 30, 16845–16854 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ash, S. et al. A longitudinal study of speech production in primary progressive aphasia and behavioral variant frontotemporal dementia. Brain Lang. 194, 46–57 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Grossman, M. Linguistic aspects of primary progressive aphasia. Annu. Rev. Linguist. 4, 377–403 (2018).

    Article  PubMed  Google Scholar 

  114. Giannini, L. A. A. et al. Divergent patterns of TDP‐43 and tau pathologies in primary progressive aphasia. Ann. Neurol. 85, 630–643 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Josephs, K. A. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129, 1385–1398 (2006).

    Article  PubMed  Google Scholar 

  116. Botha, H. et al. Classification and clinicoradiologic features of primary progressive aphasia (PPA) and apraxia of speech. Cortex 69, 220–236 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Josephs, K. A. et al. The evolution of primary progressive apraxia of speech. Brain 137, 2783–2795 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Parjane, N. et al. Digital speech analysis in progressive supranuclear palsy and corticobasal syndromes. J. Alzheimers Dis. 82, 33–45 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Respondek, G. et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov. Disord. 29, 1758–1766 (2014).

    Article  PubMed  Google Scholar 

  120. Respondek, G. et al. Validation of the Movement Disorder Society criteria for the diagnosis of 4‐repeat tauopathies. Mov. Disord. 35, 171–176 (2020).

    Article  PubMed  Google Scholar 

  121. Armstrong, M. J. et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lee, S. E. et al. Clinicopathological correlations in corticobasal degeneration. Ann. Neurol. 70, 327–340 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Josephs, K. A. & Duffy, J. R. Apraxia of speech and nonfluent aphasia: a new clinical marker for corticobasal degeneration and progressive supranuclear palsy. Curr. Opin. Neurol. 21, 688–692 (2008).

    Article  PubMed  Google Scholar 

  124. Strong, M. J. et al. Amyotrophic lateral sclerosis – frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph. Lateral Scler. Front. Degener. 18, 153–174 (2017).

    Article  Google Scholar 

  125. Ahmed, R. M. et al. Tackling clinical heterogeneity across the amyotrophic lateral sclerosis–frontotemporal dementia spectrum using a transdiagnostic approach. Brain Commun. 3, fcab257 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Cividini, C. et al. Amyotrophic lateral sclerosis–frontotemporal dementia. Neurology 98, e402–e415 (2021).

    Article  PubMed  Google Scholar 

  127. Abrahams, S., Newton, J., Niven, E., Foley, J. & Bak, T. H. Screening for cognition and behaviour changes in ALS. Amyotroph. Lateral Scler. Front. Degener. 15, 9–14 (2013).

    Article  Google Scholar 

  128. Neumann, M., Kwong, L. K., Sampathu, D. M., Trojanowski, J. Q. & Lee, V. M.-Y. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch. Neurol. 64, 1388 (2007).

    Article  PubMed  Google Scholar 

  129. Kawakami, I., Arai, T. & Hasegawa, M. The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol. 138, 751–770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nigro, S. et al. Altered structural brain networks in linguistic variants of frontotemporal dementia. Brain Imaging Behav. 16, 1113–1122 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Vuksanović, V. et al. Degeneration of basal and limbic networks is a core feature of behavioural variant frontotemporal dementia. Brain Commun. 3, fcab241 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Temp, A. G. M. et al. Cognitive profiles of amyotrophic lateral sclerosis differ in resting-state functional connectivity: an fMRI study. Front. Neurosci. 15, 682100 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Illán-Gala, I. et al. Diagnostic utility of measuring cerebral atrophy in the behavioral variant of frontotemporal dementia and association with clinical deterioration. JAMA Netw. Open 4, e211290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Anderl‐Straub, S. et al. Predicting disease progression in behavioral variant frontotemporal dementia. Alzheimers Dement. Diagn. Assess. Dis. Monit. 13, e12262 (2021).

    Google Scholar 

  135. Wisse, L. E. M. et al. Cross-sectional and longitudinal medial temporal lobe subregional atrophy patterns in semantic variant primary progressive aphasia. Neurobiol. Aging 98, 231–241 (2021).

    Article  PubMed  Google Scholar 

  136. Bocchetta, M. et al. In vivo staging of frontotemporal lobar degeneration TDP-43 type C pathology. Alzheimers Res. Ther. 12, 34 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tetzloff, K. A. et al. Progressive agrammatic aphasia without apraxia of speech as a distinct syndrome. Brain 142, 2466–2482 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Josephs, K. A. et al. A molecular pathology, neurobiology, biochemical, genetic and neuroimaging study of progressive apraxia of speech. Nat. Commun. 12, 3452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Boxer, A. L. et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch. Neurol. 63, 81 (2006).

    Article  PubMed  Google Scholar 

  140. Whitwell, J. L. et al. Radiological biomarkers for diagnosis in PSP: where are we and where do we need to be? Mov. Disord. 32, 955–971 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Agosta, F. et al. The cortical signature of amyotrophic lateral sclerosis. PLoS ONE 7, e42816 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yokoyama, J. S. & Rosen, H. J. Neuroimaging features of C9ORF72 expansion. Alzheimers Res. Ther. 4, 45–45 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Spinelli, E. G. et al. Structural MRI signatures in genetic presentations of the frontotemporal dementia/motor neuron disease spectrum. Neurology 97, e1594–e1607 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Rohrer, J. D. et al. C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol. 14, 291–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Staffaroni, A. M. et al. Rates of brain atrophy across disease stages in familial frontotemporal dementia associated with MAPT, GRN, and C9orf72 pathogenic variants. JAMA Netw. Open 3, e2022847 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cash, D. M. et al. Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiol. Aging 62, 191–196 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Jiskoot, L. C. et al. Longitudinal cognitive biomarkers predicting symptom onset in presymptomatic frontotemporal dementia. J. Neurol. 265, 1381–1392 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Panman, J. L. et al. Gray and white matter changes in presymptomatic genetic frontotemporal dementia: a longitudinal MRI study. Neurobiol. Aging 76, 115–124 (2019).

    Article  PubMed  Google Scholar 

  149. Panman, J. L. et al. Modelling the cascade of biomarker changes in GRN-related frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 92, 494–501 (2021).

    Article  PubMed  Google Scholar 

  150. Feis, R. A. et al. A multimodal MRI-based classification signature emerges just prior to symptom onset in frontotemporal dementia mutation carriers. J. Neurol. Neurosurg. Psychiatry 90, 1207–1214 (2019).

    Article  PubMed  Google Scholar 

  151. Staffaroni, A. M. et al. Individualized atrophy scores predict dementia onset in familial frontotemporal lobar degeneration. Alzheimers Dement. 16, 37–48 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Saracino, D. et al. Brain metabolic profile in presymptomatic GRN carriers throughout a 5-year follow-up. Neurology 100, e396–e407 (2022).

    Article  PubMed  Google Scholar 

  153. Premi, E. et al. The inner fluctuations of the brain in presymptomatic frontotemporal dementia: the chronnectome fingerprint. NeuroImage 189, 645–654 (2019).

    Article  PubMed  Google Scholar 

  154. Tsvetanov, K. A. et al. Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimers Dement. 17, 500–514 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Levy, J. P. et al. 18F-MK-6240 tau-PET in genetic frontotemporal dementia. Brain 145, 1763–1772 (2021).

    Article  PubMed Central  Google Scholar 

  156. Wolters, E. E. et al. [18F]Flortaucipir PET across various MAPT mutations in presymptomatic and symptomatic carriers. Neurology 97, e1017–e1030 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Irwin, D. J. et al. Ante mortem cerebrospinal fluid tau levels correlate with postmortem tau pathology in frontotemporal lobar degeneration. Ann. Neurol. 82, 247–258 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Swift, I. J. et al. Fluid biomarkers in frontotemporal dementia: past, present and future. J. Neurol. Neurosurg. Psychiatry 92, 204–215 (2020).

    Article  PubMed  Google Scholar 

  159. Sato, C. et al. MAPT R406W increases tau T217 phosphorylation in absence of amyloid pathology. Ann. Clin. Transl Neurol. 8, 1817–1830 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sha, S. J. et al. An 8-week, open-label, dose-finding study of nimodipine for the treatment of progranulin insufficiency from GRN gene mutations. Alzheimers Dement. Transl Res. Clin. Interv. 3, 507–512 (2017).

    Article  Google Scholar 

  161. Goossens, J. et al. Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration. Alzheimers Res. Ther. 10, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Cousins, K. A. Q. et al. ATN status in amnestic and non-amnestic Alzheimer’s disease and frontotemporal lobar degeneration. Brain 143, 2295–2311 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Paterson, R. W. et al. Cerebrospinal fluid in the differential diagnosis of Alzheimer’s disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic. Alzheimers Res. Ther. 10, 32 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cousins, K. A. Q. et al. ATN incorporating cerebrospinal fluid neurofilament light chain detects frontotemporal lobar degeneration. Alzheimers Dement. 17, 822–830 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Norise, C. et al. Clinical correlates of Alzheimer’s disease cerebrospinal fluid analytes in primary progressive aphasia. Front. Neurol. 10, 485 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Verde, F., Otto, M. & Silani, V. Neurofilament light chain as biomarker for amyotrophic lateral sclerosis and frontotemporal dementia. Front. Neurosci. 15, 679199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Mattsson-Carlgren, N. et al. Cerebrospinal fluid biomarkers in autopsy-confirmed Alzheimer disease and frontotemporal lobar degeneration. Neurology 98, e1137–e1150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ducharme, S. et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain 143, 1632–1650 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Vijverberg, E. G. B. et al. Cerebrospinal fluid biomarker examination as a tool to discriminate behavioral variant frontotemporal dementia from primary psychiatric disorders. Alzheimers Dement. Diagn. Assess. Dis. Monit. 7, 99–106 (2017).

    Google Scholar 

  170. Benussi, A. et al. Diagnostic and prognostic value of serum NfL and p-Tau181 in frontotemporal lobar degeneration. J. Neurol. Neurosurg. Psychiatry 91, 960–967 (2020).

    Article  PubMed  Google Scholar 

  171. Ashton, N. J. et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 141, 709–724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Karikari, T. K. et al. Head‐to‐head comparison of clinical performance of CSF phospho‐tau T181 and T217 biomarkers for Alzheimer’s disease diagnosis. Alzheimers Dement. 17, 755–767 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Thijssen, E. H. et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study. Lancet Neurol. 20, 739–752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Illán‐Gala, I. et al. Challenges associated with biomarker‐based classification systems for Alzheimer’s disease. Alzheimers Dement. Diagn. Assess. Dis. Monit. 10, 346–357 (2018).

    Google Scholar 

  175. Rohrer, J. D. et al. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology 87, 1329–1336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Steinacker, P. et al. Serum neurofilament light chain in behavioral variant frontotemporal dementia. Neurology 91, e1390–e1401 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Ashton, N. J. et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat. Commun. 12, 3400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Forgrave, L. M., Ma, M., Best, J. R. & DeMarco, M. L. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: a systematic review and meta‐analysis. Alzheimers Dement. Diagn. Assess. Dis. Monit. 11, 730–743 (2019).

    Google Scholar 

  179. Katisko, K. et al. Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders. J. Neurol. 267, 162–167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Al Shweiki, M. R. et al. Neurofilament light chain as a blood biomarker to differentiate psychiatric disorders from behavioural variant frontotemporal dementia. J. Psychiatr. Res. 113, 137–140 (2019).

    Article  PubMed  Google Scholar 

  181. Rojas, J. C. et al. Plasma neurofilament light for prediction of disease progression in familial frontotemporal lobar degeneration. Neurology 96, e2296–e2312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wilke, C. et al. Stratifying the presymptomatic phase of genetic frontotemporal dementia by serum NfL and pNfH: a longitudinal multicentre study. Ann. Neurol. 91, 33–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. Cousins, K. A. Q. et al. Distinguishing frontotemporal lobar degeneration Tau from TDP-43 using plasma biomarkers. JAMA Neurol. 79, 1155 (2022).

    Article  PubMed  Google Scholar 

  184. Sato, C. et al. Tau kinetics in neurons and the human central nervous system. Neuron 98, 861–864 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kanmert, D. et al. C-Terminally truncated forms of tau, but not full-length Tau or its C-terminal fragments, are released from neurons independently of cell death. J. Neurosci. 35, 10851–10865 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Maia, L. F. et al. Changes in amyloid-β and Tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci. Transl Med. 5, 194re2 (2013).

    Article  PubMed  Google Scholar 

  187. Steinacker, P., Barschke, P. & Otto, M. Biomarkers for diseases with TDP-43 pathology. Mol. Cell. Neurosci. 97, 43–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Scialò, C. et al. TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients. Brain Commun. 2, fcaa142 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Meeter, L. H. et al. Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann. Clin. Transl Neurol. 3, 623–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ljubenkov, P. A. et al. Cerebrospinal fluid biomarkers predict frontotemporal dementia trajectory. Ann. Clin. Transl Neurol. 5, 1250–1263 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Meeter, L. H. H. et al. Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum. Neurology 90, e1231–e1239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Scherling, C. S. et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann. Neurol. 75, 116–126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. van der Ende, E. L. et al. Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurol. 18, 1103–1111 (2019).

    Article  PubMed  Google Scholar 

  194. Huin, V. et al. Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. Brain 143, 303–319 (2019).

    Article  Google Scholar 

  195. Meeter, L. H. H. et al. Progranulin levels in plasma and cerebrospinal fluid in granulin mutation carriers. Dement. Geriatr. Cogn. Disord. Extra 6, 330–340 (2016).

    Article  Google Scholar 

  196. Lehmer, C. et al. Poly‐GP in cerebrospinal fluid links C9orf72‐associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol. Med. 9, 859–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Meeter, L. H. H. et al. Poly(GP), neurofilament and grey matter deficits in C9orf72 expansion carriers. Ann. Clin. Transl Neurol. 5, 583–597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gendron, T. F. et al. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci. Transl Med. 9, eaai7866 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Wilson, K. M. et al. Development of a sensitive trial-ready poly(GP) CSF biomarker assay for C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 93, 761–771 (2022).

    Article  PubMed  Google Scholar 

  200. Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577–589 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Robinaugh, G. & Henry, M. L. Behavioral interventions for primary progressive aphasia. Handb. Clin. Neurol. 185, 221–240 (2022).

    Article  PubMed  Google Scholar 

  202. Lasaponara, S., Marson, F., Doricchi, F. & Cavallo, M. A scoping review of cognitive training in neurodegenerative diseases via computerized and virtual reality tools: what we know so far. Brain Sci. 11, 528 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Cotelli, M. et al. Cognitive telerehabilitation in mild cognitive impairment, Alzheimer’s disease and frontotemporal dementia: a systematic review. J. Telemed. Telecare 25, 67–79 (2017).

    Article  PubMed  Google Scholar 

  204. Henry, M. L. et al. Treatment for word retrieval in semantic and logopenic variants of primary progressive aphasia: immediate and long-term outcomes. J. Speech Lang. Hear. Res. 62, 2723–2749 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Manoochehri, M. & Huey, E. D. Diagnosis and management of behavioral issues in frontotemporal dementia. Curr. Neurol. Neurosci. Rep. 12, 528–536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sheppard, S. M. Noninvasive brain stimulation to augment language therapy for primary progressive aphasia. Handb. Clin. Neurol. 185, 251–260 (2022).

    Article  PubMed  Google Scholar 

  207. Sanches, C. et al. Past, present, and future of non-invasive brain stimulation approaches to treat cognitive impairment in neurodegenerative diseases: time for a comprehensive critical review. Front. Aging Neurosci. 12, 578339 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Pytel, V. et al. Personalized repetitive transcranial magnetic stimulation for primary progressive aphasia. J. Alzheimers Dis. 84, 151–167 (2021).

    Article  PubMed  Google Scholar 

  209. Hosseini, M. et al. Proceedings #10: transcranial direct current stimulation mediates improvements in verbal fluency for patients with primary progressive aphasia. Brain Stimul. 12, e69–e71 (2019).

    Article  Google Scholar 

  210. Cotelli, M. et al. Prefrontal cortex rTMS enhances action naming in progressive non-fluent aphasia. Eur. J. Neurol. 19, 1404–1412 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Byeon, H. Meta-analysis on the effects of transcranial direct current stimulation on naming of elderly with primary progressive aphasia. Int. J. Environ. Res. Public Health 17, 1095 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Cotelli, M. et al. Effectiveness of language training and non-invasive brain stimulation on oral and written naming performance in primary progressive aphasia: a meta-analysis and systematic review. Neurosci. Biobehav. Rev. 108, 498–525 (2020).

    Article  PubMed  Google Scholar 

  213. Tsapkini, K. et al. Electrical brain stimulation in different variants of primary progressive aphasia: a randomized clinical trial. Alzheimers Dement. Transl Res. Clin. Interv. 4, 461–472 (2018).

    Article  Google Scholar 

  214. de Aguiar, V. et al. Brain volumes as predictors of tDCS effects in primary progressive aphasia. Brain Lang. 200, 104707 (2020).

    Article  PubMed  Google Scholar 

  215. Zhao, Y. et al. White matter integrity predicts electrical stimulation (tDCS) and language therapy effects in primary progressive aphasia. Neurorehabil. Neural Repair. 35, 44–57 (2020).

    Article  Google Scholar 

  216. Tao, Y., Ficek, B., Wang, Z., Rapp, B. & Tsapkini, K. Selective functional network changes following tDCS-augmented language treatment in primary progressive aphasia. Front. Aging Neurosci. 13, 681043 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Harris, A. D. et al. Reductions in GABA following a tDCS-language intervention for primary progressive aphasia. Neurobiol. Aging 79, 75–82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Kimura, T. & Takamatsu, J. Pilot study of pharmacological treatment for frontotemporal dementia: risk of donepezil treatment for behavioral and psychological symptoms. Geriatr. Gerontol. Int. 13, 506–507 (2013).

    Article  PubMed  Google Scholar 

  219. Boxer, A. L. et al. Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 12, 149–156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mendez, M. F., Shapira, J. S., McMurtray, A. & Licht, E. Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am. J. Geriatr. Psychiatry 15, 84–87 (2007).

    Article  PubMed  Google Scholar 

  221. Chow, T. W. & Mendez, M. F. Goals in symptomatic pharmacologic management of frontotemporal lobar degeneration. Am. J. Alzheimers Dis. Other Demen. 17, 267–272 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Moretti, R., Torre, P., Antonello, R. M., Cazzato, G. & Bava, A. Frontotemporal dementia: paroxetine as a possible treatment of behavior symptoms. Eur. Neurol. 49, 13–19 (2002).

    Article  Google Scholar 

  223. Prodan, C. I., Monnot, M. & Ross, E. D. Behavioural abnormalities associated with rapid deterioration of language functions in semantic dementia respond to sertraline. J. Neurol. Neurosurg. Psychiatry 80, 1416–1417 (2009).

    Article  CAS  PubMed  Google Scholar 

  224. Herrmann, N. et al. Serotonergic function and treatment of behavioral and psychological symptoms of frontotemporal dementia. Am. J. Geriatr. Psychiatry 20, 789–797 (2012).

    Article  PubMed  Google Scholar 

  225. Lebert, F., Stekke, W., Hasenbroekx, C. & Pasquier, F. Frontotemporal dementia: a randomised, controlled trial with trazodone. Dement. Geriatr. Cogn. Disord. 17, 355–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  226. Rahman, S., Nestor, P. J., Hodges, J. R., Sahakian, B. J. & Deakin, J. B. Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology 172, 400–408 (2004).

    Article  PubMed  Google Scholar 

  227. Kerrsens, C. J. & Pijnenburg, Y. A. L. Vulnerability to neuroleptic side effects in frontotemporal dementia. Eur. J. Neurol. 15, 111–112 (2008).

    Article  Google Scholar 

  228. Komossa, K. et al. Quetiapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst. Rev. 1, CD006625 (2010).

    Google Scholar 

  229. Tariot, P. N. et al. Trial of pimavanserin in dementia-related psychosis. N. Engl. J. Med. 385, 309–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  230. Gálvez-Andres, A. et al. Secondary bipolar disorder and diogenes syndrome in frontotemporal dementia. J. Clin. Psychopharmacol. 27, 722–723 (2007).

    Article  PubMed  Google Scholar 

  231. Poetter, C. E. & Stewart, J. T. Treatment of indiscriminate, inappropriate sexual behavior in frontotemporal dementia with carbamazepine. J. Clin. Psychopharmacol. 32, 137–138 (2012).

    Article  PubMed  Google Scholar 

  232. Cruz, M., Marinho, V., Fontenelle, L. F., Engelhardt, E. & Laks, J. Topiramate may modulate alcohol abuse but not other compulsive behaviors in frontotemporal dementia. Cogn. Behav. Neurol. 21, 104–106 (2008).

    Article  PubMed  Google Scholar 

  233. Nestor, P. J. Reversal of abnormal eating and drinking behaviour in a frontotemporal lobar degeneration patient using low-dose topiramate. J. Neurol. Neurosurg. Psychiatry 83, 349–350 (2011).

    Article  PubMed  Google Scholar 

  234. Singam, C., Walterfang, M., Mocellin, R., Evans, A. & Velakoulis, D. Topiramate for abnormal eating behaviour in frontotemporal dementia. Behav. Neurol. 27, 285–286 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Shinagawa, S., Tsuno, N. & Nakayama, K. Managing abnormal eating behaviours in frontotemporal lobar degeneration patients with topiramate. Psychogeriatrics 13, 58–61 (2013).

    Article  PubMed  Google Scholar 

  236. Huey, E. D., Garcia, C., Wassermann, E. M., Tierny, M. C. & Grafman, J. Stimulant treatment of frontotemporal dementia in 8 patients. J. Clin. Psychiatry 69, 1981–1982 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Rahman, S. et al. Methylphenidate (‘Ritalin’) can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia. Neuropsychopharmacology 31, 651–658 (2005).

    Article  Google Scholar 

  238. Finger, E. C. et al. Oxytocin for frontotemporal dementia: a randomized dose-finding study of safety and tolerability. Neurology 84, 174–181 (2014).

    Article  PubMed  Google Scholar 

  239. Höglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria: MDS clinical diagnostic criteria for PSP. Mov. Disord. 32, 853–864 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Boxer, A. L. et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 13, 676–685 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Tsai, R. M. et al. Reactions to multiple ascending doses of the microtubule stabilizer TPI-287 in patients with Alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome. JAMA Neurol. 77, 215 (2020).

    Article  PubMed  Google Scholar 

  242. Tolosa, E. et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov. Disord. 29, 470–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  243. VandeVrede, L. et al. Open‐label phase 1 futility studies of salsalate and young plasma in progressive supranuclear palsy. Mov. Disord. Clin. Pract. 7, 440–447 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Corsetti, V. et al. Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse Alzheimer’s disease models. Brain Commun. 2, fcaa039 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Ljubenkov, P. A. et al. Effect of the histone deacetylase inhibitor FRM-0334 on progranulin levels in patients with progranulin gene haploinsufficiency. JAMA Netw. Open 4, e2125584 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Kao, A. W., McKay, A., Singh, P. P., Brunet, A. & Huang, E. J. Progranulin, lysosomal regulation and neurodegenerative disease. Nat. Rev. Neurosci. 18, 325–333 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Logan, T. et al. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell 184, 4651–4668.e25 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Tran, H. et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide. Nat. Med. 28, 117–124 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Bayer, M. AI Therapeutics’ narrowed ambitions for ALS drug pay off as phase 2/3 beckons. FIERCE Biotech https://www.fiercebiotech.com/biotech/yale-aligned-biotech-ai-therapeutics-says-als-med-was-safe-and-promising-phase-2-trial (2023).

  250. Snowden, J. S. et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135, 693–708 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Logsdon, R. G., Gibbons, L., McCurry, S. M. & Teri, L. Quality of life in Alzheimer’s disease: patient and caregiver reports. J. Ment. Health Aging 5, 21–32 (1999).

    Google Scholar 

  252. Hsieh, S., Irish, M., Daveson, N., Hodges, J. R. & Piguet, O. When one loses empathy. J. Geriatr. Psychiatry Neurol. 26, 174–184 (2013).

    Article  PubMed  Google Scholar 

  253. Walker, N. & Vaughn, B. Sleep disturbances in patients with frontotemporal dementia [abstract 803]. Sleep 44 (Suppl. 2), A312–A313 (2021).

    Article  Google Scholar 

  254. Piguet, O. & Kumfor, F. Frontotemporal dementias: main syndromes and underlying brain changes. Curr. Opin. Neurol. 33, 215–221 (2020).

    Article  PubMed  Google Scholar 

  255. Eggins, P. et al. A shared cognitive and neural basis underpinning cognitive apathy and planning in behavioural-variant frontotemporal dementia and Alzheimer’s disease. Cortex 154, 241–253 (2022).

    Article  PubMed  Google Scholar 

  256. Gentry, M. T. et al. Quality of life and caregiver burden in familial frontotemporal lobar degeneration: analyses of symptomatic and asymptomatic individuals within the LEFFTDS cohort. Alzheimers Dement. 16, 1115–1124 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Hvidsten, L. et al. Quality of life in people with young-onset dementia: a Nordic two-year observational multicenter study. J. Alzheimers Dis. 71, 1381 (2019).

    Article  PubMed  Google Scholar 

  258. Massimo, L. et al. Apathy in frontotemporal degeneration: neuroanatomical evidence of impaired goal-directed behavior. Front. Hum. Neurosci. 9, 611 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Wong, S. et al. Apathy and its impact on carer burden and psychological wellbeing in primary progressive aphasia. J. Neurol. Sci. 416, 117007 (2020).

    Article  PubMed  Google Scholar 

  260. Toot, S., Swinson, T., Devine, M., Challis, D. & Orrell, M. Causes of nursing home placement for older people with dementia: a systematic review and meta-analysis. Int. Psychogeriatr. 29, 195–208 (2016).

    Article  PubMed  Google Scholar 

  261. Karnatz, T. et al. Burden of caregivers of patients with frontotemporal lobar degeneration – a scoping review. Int. Psychogeriatr. 33, 891–911 (2019).

    Article  PubMed  Google Scholar 

  262. Yassuda, M. S. et al. Apathy and functional disability in behavioral variant frontotemporal dementia. Neurol. Clin. Pract. 8, 120–128 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Wei, G. et al. The effects of the COVID-19 pandemic on neuropsychiatric symptoms in dementia and carer mental health: an international multicentre study. Sci. Rep. 12, 2418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Rajagopalan, J. et al. Experiences of people with dementia and their caregivers during the COVID-19 pandemic in India: a mixed-methods study. Dementia 21, 214–235 (2021).

    Article  PubMed  Google Scholar 

  265. Mok, V. C. T. et al. Tackling challenges in care of Alzheimer’s disease and other dementias amid the COVID‐19 pandemic, now and in the future. Alzheimers Dement. 16, 1571–1581 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  266. García, A. M. et al. Automated detection of speech timing alterations in autopsy-confirmed nonfluent/agrammatic variant primary progressive aphasia. Neurology 99, e500–e511 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Nevler, N. et al. Automatic measurement of prosody in behavioral variant FTD. Neurology 89, 650–656 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Nevler, N. et al. Automated analysis of natural speech in amyotrophic lateral sclerosis spectrum disorders. Neurology 95, e1629–e1639 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Lage, C. et al. Distinctive oculomotor behaviors in Alzheimer’s disease and frontotemporal dementia. Front. Aging Neurosci. 12, 603790 (2020).

    Article  CAS  PubMed  Google Scholar 

  270. Behler, A. et al. Eye movement alterations in presymptomatic C9orf72 expansion gene carriers. J. Neurol. 268, 3390–3399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. van der Ende, E. L. et al. Novel CSF biomarkers in genetic frontotemporal dementia identified by proteomics. Ann. Clin. Transl Neurol. 6, 698–707 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Swarup, V. et al. Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nat. Med. 25, 152–164 (2019).

    Article  CAS  PubMed  Google Scholar 

  273. Teunissen, C. E. et al. Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2, 86–94 (2016).

    Google Scholar 

  274. Iguchi, Y. et al. Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139, 3187–3201 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Schneider, R. et al. Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: a GENFI study. J. Neurol. Neurosurg. Psychiatry 89, 851–858 (2018).

    Article  PubMed  Google Scholar 

  276. Sheinerman, K. S. et al. Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. Alzheimers Res. Ther. 9, 89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  277. McMillan, C. T. et al. C9orf72 promoter hypermethylation is neuroprotective: euroimaging and neuropathologic evidence. Neurology 84, 1622–1630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Allen, M. et al. Gene expression, methylation and neuropathology correlations at progressive supranuclear palsy risk loci. Acta Neuropathol. 132, 197–211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Belzil, V. V., Katzman, R. B. & Petrucelli, L. ALS and FTD: an epigenetic perspective. Acta Neuropathol. 132, 487–502 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Gerrits, E. et al. Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat. Neurosci. 25, 1034–1048 (2022).

    Article  CAS  PubMed  Google Scholar 

  281. Tosun, D. et al. Diagnostic utility of ASL‐MRI and FDG‐PET in the behavioral variant of FTD and AD. Ann. Clin. Transl Neurol. 3, 740–751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Olm, C. A. et al. Arterial spin labeling perfusion predicts longitudinal decline in semantic variant primary progressive aphasia. J. Neurol. 263, 1927–1938 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Meeter, L. H., Kaat, L. D., Rohrer, J. D. & van Swieten, J. C. Imaging and fluid biomarkers in frontotemporal dementia. Nat. Rev. Neurol. 13, 406–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  284. Chen, Q. et al. Frontal lobe 1H MR spectroscopy in asymptomatic and symptomatic MAPT mutation carriers. Neurology 93, e758–e765 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Quinn, C. et al. Frontal lobe abnormalities on MRS correlate with poor letter fluency in ALS. Neurology 79, 583–588 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Cheong, I. et al. Ultra-high field proton MR spectroscopy in early-stage amyotrophic lateral sclerosis. Neurochem. Res. 42, 1833–1844 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Coulthard, E. et al. Proton magnetic resonance spectroscopy in frontotemporal dementia. J. Neurol. 253, 861–868 (2006).

    Article  CAS  PubMed  Google Scholar 

  288. Ranasinghe, K. G. et al. Distinct spatiotemporal patterns of neuronal functional connectivity in primary progressive aphasia variants. Brain 140, 2737–2751 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Mandelli, M. L. et al. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia. Brain 139, 2778–2791 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Tisdall, M. D. et al. Ex vivo MRI and histopathology detect novel iron-rich cortical inflammation in frontotemporal lobar degeneration with tau versus TDP-43 pathology. Neuroimage Clin. 33, 102913 (2022).

    Article  PubMed  Google Scholar 

  291. Pallebage-Gamarallage, M. et al. Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: a post mortem whole brain sampling strategy for the integration of ultra-high-field MRI and quantitative neuropathology. BMC Neurosci. 19, 11 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Meadowcroft, M. D. et al. Histological-MRI correlation in the primary motor cortex of patients with amyotrophic lateral sclerosis. J. Magn. Reson. Imaging 41, 665–675 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Kim, B. J. et al. Persistent and progressive outer retina thinning in frontotemporal degeneration. Front. Neurosci. 13, 298–298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Kim, B. J. et al. Optical coherence tomography identifies outer retina thinning in frontotemporal degeneration. Neurology 89, 1604–1611 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Fonteijn, H. M. et al. An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease. NeuroImage 60, 1880–1889 (2012).

    Article  PubMed  Google Scholar 

  296. Young, A. L. et al. A data-driven model of biomarker changes in sporadic Alzheimer’s disease. Brain 137, 2564–2577 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Olm, C. A. et al. Event-based modeling of T1-weighted MRI is related to pathology in frontotemporal lobar degeneration due to tau and TDP. NeuroImage Clin. 37, 103285 (2023).

    Article  PubMed  Google Scholar 

  298. Deleon, J. & Miller, B. L. in Neurogenetics, Part II (eds Geschwind, D. H., Paulson, H. L. & Klein, C.) 409–430 (Elsevier, 2018). [Series Eds Aminoff, M. J., Boller, F. & Swaab, D. F. Handbook of Clinical Neurology Vol. 148].

  299. Poorkaj, P. et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol. 43, 815–825 (1998).

    Article  CAS  PubMed  Google Scholar 

  300. Spillantini, M. G. et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl Acad. Sci. USA 95, 7737–7741 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Pottier, C. et al. Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol. 17, 548–558 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Finch, N. et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76, 467–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  303. van Blitterswijk, M. et al. TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol. 127, 397–406 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Hofmann, J. W., Seeley, W. W. & Huang, E. J. RNA binding proteins and the pathogenesis of frontotemporal lobar degeneration. Annu. Rev. Pathol. Mech. Dis. 14, 469–495 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.G. is supported by AG066597. J.L.W. is supported by R01-DC12519, R01-DC14942, R01-NS89757 and RF1-NS112153. O.P. is supported by a National Health and Medical Research Council of Australia Leadership Fellowship (GNT2008020). H.Z. is a Wallenberg Scholar supported by grants from the Swedish Research Council (2022-01018 and 2019-02397), the European Union’s Horizon Europe Research and Innovation Programme under grant agreement no. 101053962, and Swedish State Support for Clinical Research (ALFGBG-71320).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.G. and B.M.); Epidemiology (D.S.K.); Mechanisms/pathophysiology (W.W.S. and R.R.); Diagnosis, screening and prevention (M.G., J.L.W. and H.Z.); Management (A.L.B., A.E.H. and P.A.L.); Quality of life (O.P.); Outlook (M.G. and J.C.v.S.); Overview of Primer (M.G. and W.W.S.).

Corresponding author

Correspondence to William W. Seeley.

Ethics declarations

Competing interests

H.Z. has served on scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector, Alzinova, ALZPath, Annexon, Apellis, Artery Therapeutics, AZTherapies, CogRx, Denali, Eisai, Nervgen, Novo Nordisk, Optoceutics, Passage Bio, Pinteon Therapeutics, Prothena, Red Abbey Labs, reMYND, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics, and Wave; has given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure, Biogen, and Roche; and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside the submitted work). A.L.B. has received financial support from NIH, the Association for Frontotemporal Degeneration, the Bluefield Project, the Rainwater Charitable Foundation, Regeneron, Eisai and Biogen; and has served as a paid consultant for AGTC, Alector, Amylyx, AviadoBio, Arkuda, Arrowhead, Arvinas, Eli Lilly, Genentech, LifeEdit, Merck, Modalis, Oligomerix, Oscotec, Transposon and Wave. D.S.K. serves on a Data Safety Monitoring Board for the Dominantly Inherited Alzheimer Network Treatment Unit study; served on a Data Safety monitoring Board for a tau therapeutic for Biogen (until 2021) but received no personal compensation; is an investigator in clinical trials sponsored by Biogen, Lilly Pharmaceuticals and the University of Southern California; has served as a consultant for Roche, Samus Therapeutics, Magellan Health, Biovie and Alzeca Biosciences but receives no personal compensation; attended an Eisai advisory board meeting for lecanemab on December 2, 2022, but received no compensation; and is an unpaid coinvestigator in an Alector trial for persons with GRN mutations. R.R. received financial support from NIH; is a member of the Scientific Advisory Board of Arkuda Therapeutics; and receives invention royalties from a patent related to progranulin. W.W.S. serves as a paid consultant to Biogen Idec and has received grant support from NIH, the Association for Frontotemporal Degeneration, the Bluefield Project, the Rainwater Charitable Foundation, and the Chan-Zuckerberg Initiative. J.L.W. and A.E.H. received grant support from the NIH. B.M. has received grant support from NIH, the Bluefield Project, and the Rainwater Charitable Foundation; has received royalties from books published by Cambridge University Press, Elsevier, Inc., Guilford Publications, Inc., Johns Hopkins Press, Oxford University Press and Taylor & Francis Group; has received honorarium for serving as a member of the Scientific Advisory Board of the Alzheimer’s Disease Research Center (ADRC) at Massachusetts General Hospital, Stanford University, and the University of Washington; and has received consulting fees from Genworth. P.A.L. receives research search support from NIH/NIA and the Alzheimer’s Association Part the Cloud Partnership; is the FDA IND sponsor for a clinical trial of a drug supplied by Biohaven; has served as a clinical site primary investigator for trials sponsored by Woolsey, Alector, Transposon, and AbbVie; and currently serves as a clinical site sub-investigator for clinical trials sponsored by Lilly, Eisai and Biogen.

Peer review

Peer review information

Nature Reviews Disease Primers thanks E. Huey, I. Le Ber, I. Mackenzie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Dedication

We dedicate this work to the late Murray Grossman, who passed away on 4 April 2023. Murray was a dear friend to us all and to a worldwide community of neurologists and neuroscientists. He combined an acute interest in cognitive neuroscience that began as a graduate student with his clinical acumen as a behavioural neurologist to advance our knowledge of the frontotemporal degenerations. We will remember Murray, who was the driving force behind this review, for his wisdom and grace.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grossman, M., Seeley, W.W., Boxer, A.L. et al. Frontotemporal lobar degeneration. Nat Rev Dis Primers 9, 40 (2023). https://doi.org/10.1038/s41572-023-00447-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00447-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing