Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuropsychological assessment of patients with dementing illness

Abstract

Neuropsychological assessment has a distinct role in the detection and monitoring of cognitive and functional changes associated with dementing illness. Molecular, structural and functional neuroimaging studies have advanced our understanding of the anatomy and physiology underlying neurodegenerative disease; however, the overlap in pathological features of different dementia-associated diseases limits the information that can be obtained by these methods. Incorporation of information obtained from multiple sources can help to increase diagnostic and prognostic accuracy. Neuropsychological test findings provide unique value as biomarkers of dementia, as differentiators of disease topography and in the estimation of disease risk and trajectory. However, psychometric test properties—such as construct validity, stability and the use of appropriate norms—must be understood, because they influence both the application of neuropsychological tests and the interpretation of their results. Finally, measurement of cognitive strengths and weaknesses in patients at risk of dementia can be helpful to predict changes in functional abilities, design appropriate and effective interventions, and assist family and health-care providers in the planning of the patient's future care needs. This Review describes the key characteristics of neuropsychological testing in the assessment of patients at risk of dementia.

Key Points

  • Neuropsychological parameters serve as biomarkers for and potent predictors of the development of dementia

  • Serial use of neuropsychological tests can dynamically capture the effects of various influences on disease trajectory

  • Deficits on neuropsychological measures are proxies for functional deficiencies in patients with possible dementia

  • Neuropsychological test results can be used to identify targets for intervention; for example, intact procedural memory might be used to compensate for deficient declarative memory

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic changes in biomarkers associated with the progression of Alzheimer disease, and dementia with Lewy bodies.
Figure 2: Ages at onset of the cardinal features of dementia with Lewy bodies.
Figure 3: Cognitive domains underlying commonly used neuropsychological measures.
Figure 4: Representative neuropsychological profiles for patients with different autopsy-confirmed forms of dementia.
Figure 5: Interaction of age, family history and memory performance in predicting 5-year risk of cognitive impairment.
Figure 6: Hypothetical model of dementia prevention.

Similar content being viewed by others

References

  1. Schoonenboom, N. S. et al. CSF and MRI markers independently contribute to the diagnosis of Alzheimer's disease. Neurobiol. Aging 29, 669–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann. Neurol. 55, 306–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Clark, C. M. et al. Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol. 60, 1696–1702 (2003).

    Article  PubMed  Google Scholar 

  4. Shaw, L. M. et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann. Neurol. 65, 403–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jack, C. R. Jr et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, G. E. et al. Time course of diagnostic features of Lewy body disease. Neurology 72 (Suppl. 3), A246 (2009).

    Google Scholar 

  7. Jack, C. R. Jr et al. Introduction to the recommendations from the National Institute on Aging and Alzheimer's Association workgroups on diagnostic guidelines for Alzheimers disease. Alzheimers Dement. 7, 257–262 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Greenaway, M. C., Smith, G. E., Tangalos, E. G., Geda, Y. E. & Ivnik, R. J. Mayo older Americans normative studies: factor analysis of an expanded neuropsychological battery. Clin. Neuropsychol. 23, 7–20 (2009).

    Article  PubMed  Google Scholar 

  9. Pedraza, O. et al. Mayo's older African American normative studies: confirmatory factor analysis of a core battery. J. Int. Neuropsychol. Soc. 11, 184–191 (2005).

    Article  PubMed  Google Scholar 

  10. Smith, G. E. et al. The Mayo Cognitive Factor Scales (MCFS): derivation of a short battery and norms for factor scores. Neuropsychology 9, 194–202 (1994).

    Article  Google Scholar 

  11. Squire, L. R. Memory and brain systems: 1969–2009 J. Neurosci. 29, 12711–12716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, G. E. Is mild cognitive impairment bridging the gap between normal aging and Alzheimer's disease? J. Neural Transm. Suppl. 62, 97–104 (2002).

    Article  Google Scholar 

  13. Attix, D. K. et al. The prediction of change: normative neuropsychological trajectories. Clin. Neuropsychol. 23, 21–38 (2009).

    Article  PubMed  Google Scholar 

  14. Stein, J., Luppa, M., Brahler, E., Konig, H. H. & Riedel-Heller, S. G. The assessment of changes in cognitive functioning: reliable change indices for neuropsychological instruments in the elderly—a systematic review. Dement. Geriatr. Cogn. Disord. 29, 275–286 (2010).

    Article  PubMed  Google Scholar 

  15. Busch, R. M., Chelune, G. J. & Suchy, Y. in Geriatric Neuropsychology: Assessment and Intervention (eds Attix, D. K. & Welsh-Bohmer, K. A.) 133–157 (Guilford, New York, 2006).

    Google Scholar 

  16. Ivnik, R. J. et al. Testing normal older people three or four times at 1- to 2-year intervals: defining normal variance. Neuropsychology 13, 121–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. O'Connell, M. E. & Tuokko, H. Age corrections and dementia classification accuracy. Arch. Clin. Neuropsychol. 25, 126–138 (2010).

    Article  PubMed  Google Scholar 

  18. Sliwinski, M. J., Hofer, S. M., Hall, C., Buschke, H. & Lipton, R. D. in Mild Cognitive Impairment (ed. Petersen, R.) 89–104 (Oxford University Press, New York, 2003).

    Google Scholar 

  19. Sackett, D. L., Haynes, R. B., Guyatt, G. H. & Tugwell, P. Clinical Epidemiology: A Basic Science for Clinical Medicine (Lippincott Williams & Wilkins, New York, 1991).

    Google Scholar 

  20. Sackett, D. L., Straus, S. E., Richardson, W. S., Rosenberg, W. & Haynes, R. B. Evidence-Based Medicine: How to Practice and Teach EBM (Churchill Livingstone, New York, 2000).

    Google Scholar 

  21. Smith, G. E. & Ivnik, R. J. in Mild Cognitive Impairment (ed. Petersen, R.) 63–88 (Oxford University Press, New York, 2003).

    Google Scholar 

  22. Mitrushina, M., Boone, K. B., Razani, J. & D'Elia, L. F. Handbook of Normative Data for Neuropsychological Assessment (Oxford University Press, New York, 2005).

    Google Scholar 

  23. Strauss, E., Sherman, E. M. S. & Spreen, O. (eds) A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary (Oxford University Press, New York, 2006).

    Google Scholar 

  24. Heaton, R. K., Miller, S. W., Taylor, M. J. & Grant, I (eds) Revised Comprehensive Norms for an Expanded Halstead–Reitan Battery: Demographically Adjusted Neuropsychological Norms for African American and Caucasian Adults—Professional Manual (Psychological Assessment Resources, Lutz, 2004).

    Google Scholar 

  25. Ivnik, R. J., Malec, J. F., Smith, G. E., Tangalos, E. G. & Petersen, R. C. Neuropsychological tests' norms above age 55: COWAT, BNT, MAE Token, WRAT-R. Reading, AMNART, STROOP, TMT, and JLO. Clin. Neuropsychol. 10, 262–278 (1996).

    Article  Google Scholar 

  26. Pedraza, O. et al. Robust and expanded norms for the Dementia Rating Scale. Arch. Clin. Neuropsychol. 25, 347–358 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lucas, J. A. et al. Mayo's older Americans normative studies: category fluency norms. J. Clin. Exp. Neuropsychol. 20, 194–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Ivnik, R. J. et al. Free and cued selective reminding test: MOANS norms. J. Clin. Exp. Neuropsychol. 19, 676–691 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Byrd, D. A. & Manly, J. J. in Geriatric Neuropsychology: Practice Essentials (eds Bush, S. S. & Martin, T. A) 116–139 (Taylor & Francis, New York, 2005).

    Google Scholar 

  30. Romero, H. R. et al. Challenges in the neuropsychological assessment of ethnic minorities: summit proceedings. Clin. Neuropsychol. 23, 761–779 (2009).

    Article  PubMed  Google Scholar 

  31. Farias, S. T., Mungas, D., Reed, B., Haan, M. N. & Jagust, W. J. Everyday functioning in relation to cognitive functioning and neuroimaging in community-dwelling Hispanic and non-Hispanic older adults. J. Int. Neuropsychol. Soc. 10, 342–354 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shuttleworth-Edwards, A. B. et al. Cross-cultural effects on IQ test performance: a review and preliminary normative indications on WAIS-III test performance. J. Clin. Exp. Neuropsychol. 26, 903–920 (2004).

    Article  PubMed  Google Scholar 

  33. Boone, K. B., Victor, T. L., Wen, J., Razani, J. & Ponton, M. The association between neuropsychological scores and ethnicity, language, and acculturation variables in a large patient population. Arch. Clin. Neuropsychol. 22, 355–365 (2007).

    Article  PubMed  Google Scholar 

  34. Campbell, A. L. Jr et al. Caveats in the neuropsychological assessment of African Americans. J. Natl Med. Assoc. 94, 591–601 (2002).

    PubMed  PubMed Central  Google Scholar 

  35. Manly, J. J., Jacobs, D. M., Touradji, P., Small, S. A. & Stern, Y. Reading level attenuates differences in neuropsychological test performance between African American and white elders. J. Int. Neuropsychol. Soc. 8, 341–348 (2002).

    Article  PubMed  Google Scholar 

  36. Patton, D. E. et al. Performance of cognitively normal African Americans on the RBANS in community dwelling older adults. Clin. Neuropsychol. 17, 515–530 (2003).

    Article  PubMed  Google Scholar 

  37. Manly, J. J. et al. Cognitive test performance among nondemented elderly African Americans and whites. Neurology 50, 1238–1245 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Lichtenberg, P. A., Manning, C. A., Vangel, C. A. & Ross, T. P. Normative and ecological validity data in older urban medical patients: a program of neuropsychological research. Adv. Med. Psychotherapy 8, 121–136 (1995).

    Google Scholar 

  39. Lucas, J. A. et al. Mayo's older African Americans normative studies: norms for Boston Naming Test, Controlled Oral Word Association, Category Fluency, Animal Naming, Token Test, WRAT-3 Reading, Trail Making Test, Stroop Test, and Judgment of Line Orientation. Clin. Neuropsychol. 19, 243–269 (2005).

    Article  PubMed  Google Scholar 

  40. Rilling, L. M. et al. Mayo's older African American normative studies: norms for the Mattis Dementia Rating Scale. Clin. Neuropsychol. 19, 229–242 (2005).

    Article  PubMed  Google Scholar 

  41. Ferman, T. J. et al. Mayo's older African American normative studies: auditory verbal learning test norms for African American elders. Clin. Neuropsychol. 19, 214–228 (2005).

    Article  PubMed  Google Scholar 

  42. Lucas, J. A. et al. Mayo's older African Americans normative studies: WMS-R norms for African American elders. Clin. Neuropsychol. 19, 189–213 (2005).

    Article  PubMed  Google Scholar 

  43. Ponton, M. O. et al. Normative data stratified by age and education for the Neuropsychological Screening Battery for Hispanics (NeSBHIS): initial report. J. Int. Neuropsychol. Soc. 2, 96–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Ostrosky-Solis, F. et al. NEUROPSI attention and memory: a neuropsychological test battery in Spanish with norms by age and educational level. Appl. Neuropsychol. 14, 156–170 (2007).

    Article  PubMed  Google Scholar 

  45. Mungas, D., Widaman, K. F., Reed, B. R. & Tomaszewski Farias, S. Measurement invariance of neuropsychological tests in diverse older persons. Neuropsychology 25, 260–269 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Siedlecki, K. L. et al. Do neuropsychological tests have the same meaning in Spanish speakers as they do in English speakers? Neuropsychology 24, 402–411 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Smith, G. E., Ivnik, R. J. & Lucas, J. in Textbook of Clinical Neuropsychology (eds Morgan, J. & Ricker, J.) 38–57 (Taylor & Francis, New York, 2008).

    Google Scholar 

  48. Heaton, R. K., Ryan, L. & Grant, I. in Neuropsychological Assessment of Neuropsychiatric and Neuromedical Disorders (eds Grant, I. & Adams, K. M.) 127–155 (Oxford University Press, New York, 2009).

    Google Scholar 

  49. Nauert, R. Revised Psychiatric Diagnosis Manual, DSM-V. Psych Central [online], (2011).

    Google Scholar 

  50. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

  51. Lezak, M. D., Howieson, D. B. & Loring, D. W. in Neuropsychological Assessment 100–132 (Oxford University Press, New York, 2004).

    Google Scholar 

  52. Raz, N. & Rodrigue, K. M. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 30, 730–748 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hedden, T. & Gabrieli, J. D. Insights into the ageing mind: a view from cognitive neuroscience. Nat. Rev. Neurosci. 5, 87–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Eyler, L. T., Sherzai, A., Kaup, A. R. & Jeste, D. V. A review of functional brain imaging correlates of successful cognitive aging. Biol. Psychiatry 70, 115–122 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kaup, A. R., Mirzakhanian, H., Jeste, D. V. & Eyler, L. T. A review of the brain structure correlates of successful cognitive aging. J. Neuropsychiatry Clin. Neurosci. 23, 6–15 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chapman, R. M. et al. Diagnosis of Alzheimer's disease using neuropsychological testing improved by multivariate analyses. J. Clin. Exp. Neuropsychol. 32, 793–808 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Powell, M. R. et al. Cognitive measures predict pathologic Alzheimer disease. Arch. Neurol. 63, 865–868 (2006).

    Article  PubMed  Google Scholar 

  58. Filoteo, J. V. et al. Verbal learning and memory in patients with dementia with Lewy bodies or Parkinson's disease with dementia. J. Clin. Exp. Neuropsychol. 31, 823–834 (2009).

    Article  PubMed  Google Scholar 

  59. Murray, R. et al. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology 68, 1274–1283 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Galton, C. J., Patterson, K., Xuereb, J. H. & Hodges, J. R. Atypical and typical presentations of Alzheimer's disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain 123, 484–498 (2000).

    Article  PubMed  Google Scholar 

  61. Mitchell, T. W. et al. Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann. Neurol. 51, 182–189 (2002).

    Article  PubMed  Google Scholar 

  62. Rascovsky, K., Salmon, D. P., Hansen, L. A., Thal, L. J. & Galasko, D. Disparate letter and semantic category fluency deficits in autopsy-confirmed frontotemporal dementia and Alzheimer's disease. Neuropsychology 21, 20–30 (2007).

    Article  PubMed  Google Scholar 

  63. Kraybill, M. L. et al. Cognitive differences in dementia patients with autopsy-verified, AD, Lewy body pathology, or both. Neurology 64, 2069–2073 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. van Harten, A. C. et al. Review: tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin. Chem. Lab. Med. 49, 353–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Whitwell, J. L. et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain 132, 2932–2946 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hu, W. T. et al. Survival profiles of patients with frontotemporal dementia and motor neuron disease. Arch. Neurol. 66, 1359–1364 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Forman, M. S. et al. Frontotemporal dementia: clinicopathological correlations. Ann. Neurol. 59, 952–962 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Miller, B. L. in The Behavioral Neurology of Dementia (eds Miller, B. L. & Boeve, B. F) 1–6 (Cambridge University Press, New York, 2009).

    Book  Google Scholar 

  69. Grossman, M. et al. Distinct antemortem profiles in patients with pathologically defined frontotemporal dementia. Arch. Neurol. 64, 1601–1609 (2007).

    Article  PubMed  Google Scholar 

  70. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Josephs, K. A. et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129, 1385–1398 (2006).

    Article  PubMed  Google Scholar 

  72. Ferman, T. J. et al. Neuropsychological differentiation of dementia with Lewy bodies from normal aging and Alzheimer's disease. Clin. Neuropsychol. 20, 623–636 (2006).

    Article  PubMed  Google Scholar 

  73. Boeve, B. F. in The Behavioral Neurology of Dementia (eds Miller, B. L. & Boeve, B. F) 197–212 (Cambridge University Press, New York, 2009).

    Book  Google Scholar 

  74. Marui, W., Iseki, E., Kato, M., Akatsu, H. & Kosaka, K. Pathological entity of dementia with Lewy bodies and its differentiation from Alzheimer's disease. Acta Neuropathol. 108, 121–128 (2004).

    Article  PubMed  Google Scholar 

  75. Reed, B. R. et al. Profiles of neuropsychological impairment in autopsy-defined Alzheimer's disease and cerebrovascular disease. Brain 130, 731–739 (2007).

    Article  PubMed  Google Scholar 

  76. Desmond, D. W. The neuropsychology of vascular cognitive impairment: is there a specific cognitive deficit? J. Neurol. Sci. 226, 3–7 (2004).

    Article  PubMed  Google Scholar 

  77. Graham, N. L., Emery, T. & Hodges, J. R. Distinctive cognitive profiles in Alzheimer's disease and subcortical vascular dementia. J. Neurol. Neurosurg. Psychiatry 75, 61–71 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Duke, L. M. & Kaszniak, A. W. Executive control functions in degenerative dementias: a comparative review. Neuropsychol. Rev. 10, 75–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Carew, T. G., Lamar, M., Cloud, B. S., Grossman, M. & Libon, D. J. Impairment in category fluency in ischemic vascular dementia. Neuropsychology 11, 400–412 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Libon, D. J. et al. Dementia associated with periventricular and deep white matter alterations: a subtype of subcortical dementia. Arch. Clin. Neuropsychol. 12, 239–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Lamar, M., Catani, M., Price, C. C., Heilman, K. M. & Libon, D. J. The impact of region-specific leukoaraiosis on working memory deficits in dementia. Neuropsychologia 46, 2597–2601 (2008).

    Article  PubMed  Google Scholar 

  82. Lamar, M., Price, C. C., Davis, K. L., Kaplan, E. & Libon, D. J. Capacity to maintain mental set in dementia. Neuropsychologia 40, 435–445 (2002).

    Article  PubMed  Google Scholar 

  83. Cosentino, S., Jefferson, A., Chute, D. L., Kaplan, E. & Libon, D. J. Clock drawing errors in dementia: neuropsychological and neuroanatomical considerations. Cogn. Behav. Neurol. 17, 74–84 (2004).

    Article  PubMed  Google Scholar 

  84. Price, C. C., Jefferson, A. L., Merino, J. G., Heilman, K. M. & Libon, D. J. Subcortical vascular dementia: integrating neuropsychological and neuroradiologic data. Neurology 65, 376–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Leber, P. Guidelines for the clinical evaluation of antidementia drugs. First draft [online], (1990).

  86. Ewers, M. et al. Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol. Aging 34, 430–442 (2011).

    CAS  Google Scholar 

  87. Landau, S. M. et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 75, 230–238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bäckman, L., Jones, S., Berger, A. K., Laukka, E. J. & Small, B. J. Cognitive impairment in preclinical Alzheimer's disease: a meta-analysis. Neuropsychology 19, 520–531 (2005).

    Article  PubMed  Google Scholar 

  89. Bozoki, A., Giordani, B., Heidebrink, J. L., Berent, S. & Foster, N. L. Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. Arch. Neurol. 58, 411–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Lopez, O. L. et al. Prevalence and classification of mild cognitive impairment in the Cardiovascular Health Study Cognition Study: part 1. Arch. Neurol. 60, 1385–1389 (2003).

    Article  PubMed  Google Scholar 

  91. Molinuevo, J. L. et al. Neuropsychological profile of prodromal Alzheimer's disease (Prd-AD) and their radiological correlates. Arch. Gerontol. Geriatr. 52, 190–196 (2011).

    Article  PubMed  Google Scholar 

  92. Tabert, M. H. et al. Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Arch. Gen. Psychiatry 63, 916–924 (2006).

    Article  PubMed  Google Scholar 

  93. Chen, P. et al. Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented. Neurology 55, 1847–1853 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. DeCarli, C. et al. Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology 63, 220–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Devanand, D. P. et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 68, 828–836 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Elias, M. F. et al. The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham cohort. Arch. Neurol. 57, 808–813 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Rozzini, L. et al. Conversion of amnestic mild cognitive impairment to dementia of Alzheimer type is independent to memory deterioration. Int. J. Geriatr. Psychiatry 22, 1217–1222 (2007).

    Article  PubMed  Google Scholar 

  98. Tierney, M. C., Moineddin, R. & McDowell, I. Prediction of all-cause dementia using neuropsychological tests within 10 and 5 years of diagnosis in a community-based sample. J. Alzheimer's Dis. 22, 1231–1240 (2010).

    Article  Google Scholar 

  99. Locke, D. E. et al. Age, family history, and memory and future risk for cognitive impairment. J. Clin. Exp. Neuropsychol. 31, 111–116 (2009).

    Article  PubMed  Google Scholar 

  100. Stern, Y. Cognitive reserve. Neuropsychologia 47, 2015–2028 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Petersen, R. C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Twamley, E. W., Ropacki, S. A. & Bondi, M. W. Neuropsychological and neuroimaging changes in preclinical Alzheimer's disease. J. Int. Neuropsychol. Soc. 12, 707–735 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Smith, G. E. et al. A plateau in pre-Alzheimer memory decline: evidence for compensatory mechanisms? Neurology 69, 133–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Grady, C. L. et al. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J. Neurosci. 23, 986–993 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yetkin, F. Z., Rosenberg, R. N., Weiner, M. F., Purdy, P. D. & Cullum, C. M. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer's disease. Eur. Radiol. 16, 193–206 (2006).

    Article  PubMed  Google Scholar 

  106. Fields, J. A. et al. Utility of the DRS for predicting problems in day-to-day functioning. Clin. Neuropsychol. 24, 1167–1180 (2010).

    Article  PubMed  Google Scholar 

  107. Ganguli, M. et al. Cognitive test performance predicts change in functional status at the population level: the MYHAT Project. J. Int. Neuropsychol. Soc. 16, 761–770 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kim, K. R. et al. Characteristic profiles of instrumental activities of daily living in different subtypes of mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 27, 278–285 (2009).

    Article  PubMed  Google Scholar 

  109. Pereira, F. S. et al. Profiles of functional deficits in mild cognitive impairment and dementia: benefits from objective measurement. J. Int. Neuropsychol. Soc. 16, 297–305 (2010).

    Article  PubMed  Google Scholar 

  110. Schmitter-Edgecombe, M., Woo, E. & Greeley, D. R. Characterizing multiple memory deficits and their relation to everyday functioning in individuals with mild cognitive impairment. Neuropsychology 23, 168–177 (2009).

    Article  PubMed  Google Scholar 

  111. Tomaszewski Farias, S. et al. Longitudinal changes in memory and executive functioning are associated with longitudinal change in instrumental activities of daily living in older adults. Clin. Neuropsychol. 23, 446–461 (2009).

    Article  PubMed  Google Scholar 

  112. Boyle, P. A. et al. Executive dysfunction and apathy predict functional impairment in Alzheimer disease. Am. J. Geriatr. Psychiatry 11, 214–221 (2003).

    Article  PubMed  Google Scholar 

  113. O'Bryant, S. E. et al. Executive functioning mediates the link between other neuropsychological domains and daily functioning: a Project FRONTIER study. Int. Psychogeriatr. 23, 107–113 (2011).

    Article  PubMed  Google Scholar 

  114. Smith, G. E., O'Brien, P. C., Ivnik, R. J., Kokmen, E. & Tangalos, E. G. Prospective analysis of risk factors for nursing home placement of dementia patients. Neurology 57, 1467–1473 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Lemsky, C. M., Smith, G., Malec, J. F. & Ivnik, R. J. Identifying risk for functional impairment using cognitive measures: an application of CART modeling. Neuropsychology 10, 368–375 (1996).

    Article  Google Scholar 

  116. Belleville, S. et al. Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: evidence from a cognitive intervention program. Dement. Geriatr. Cogn. Disord. 22, 486–499 (2006).

    Article  PubMed  Google Scholar 

  117. Cipriani, G., Bianchetti, A. & Trabucchi, M. Outcomes of a computer-based cognitive rehabilitation program on Alzheimer's disease patients compared with those on patients affected by mild cognitive impairment. Arch. Gerontol. Geriatr. 43, 327–335 (2006).

    Article  PubMed  Google Scholar 

  118. Rapp, S., Brenes, G. & Marsh, A. P. Memory enhancement training for older adults with mild cognitive impairment: a preliminary study. Aging Ment. Health 6, 5–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Talassi, E. et al. Effectiveness of a cognitive rehabilitation program in mild dementia (MD) and mild cognitive impairment (MCI): a case control study. Arch. Gerontol. Geriatr. 44 (Suppl. 1), 391–399 (2007).

    Article  PubMed  Google Scholar 

  120. Jean, L., Bergeron, M. E., Thivierge, S. & Simard, M. Cognitive intervention programs for individuals with mild cognitive impairment: systematic review of the literature. Am. J. Geriatr. Psychiatry 18, 281–296 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants 1K12HD065987, RO1 AG15866, P50 AG16574 and R01 NR12419. We wish to acknowledge our colleagues affiliated with the Robert H. and Clarice Smith and Abigail Van Buren Alzheimer's Disease Research Program of the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J. A. Fields researched data for the article. G. E. Smith and J. A. Fields organized and wrote the article. T. J. Ferman and B. F. Boeve contributed to discussions of the content and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Glenn E. Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fields, J., Ferman, T., Boeve, B. et al. Neuropsychological assessment of patients with dementing illness. Nat Rev Neurol 7, 677–687 (2011). https://doi.org/10.1038/nrneurol.2011.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing