Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The importance of total kidney volume in evaluating progression of polycystic kidney disease

Key Points

  • In autosomal dominant polycystic kidney disease (ADPKD), renal cyst formation begins in utero and continues throughout life

  • Renal cysts originate in tubules and contribute to the development of renal insufficiency

  • Individual renal cysts progressively expand at a constant rate that can differ widely from the growth rate of neighbouring cysts

  • Cysts disrupt the renal ultrastructure in the early stages of ADPKD and cause renin-dependent hypertension, albuminuria, interstitial inflammation, fibrosis, and the destruction of functioning nephrons.

  • Evidence indicates that the annual rate of kidney growth in ADPKD is inversely linked to the decline in glomerular filtration rate so can be used to predict future decline in glomerular function

  • Longitudinal studies in thousands of patients have provided evidence to validate the use of total kidney volume as a prognostic marker and as a potential indicator of treatment efficacy in ADPKD

Abstract

The rate at which autosomal dominant polycystic kidney disease (ADPKD) progresses to end-stage renal disease varies widely and is determined by genetic and non-genetic factors. The ability to determine the prognosis of children and young adults with ADPKD is important for the effective life-long management of the disease and to enable the efficacy of emerging therapies to be determined. Total kidney volume (TKV) reflects the sum volume of hundreds of individual cysts with potentially devastating effects on renal function. The sequential measurement of TKV has been advanced as a dynamic biomarker of disease progression, yet doubt remains among nephrologists and regulatory agencies as to its usefulness. Here, we review the mechanisms that lead to an increase in TKV in ADPKD, and examine the evidence supporting the conclusion that TKV provides a metric of disease progression that can be used to assess the efficacy of potential therapeutic regimens in children and adults with ADPKD. Moreover, we propose that TKV can be used to monitor treatment efficacy in patients with normal levels of renal function, before the pathologic processes of ADPKD cause extensive fibrosis and irreversible loss of functioning renal tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The formation and expansion of a tubule cyst.
Figure 2: Features of early cyst formation.
Figure 3: Potential influence of collecting duct cyst formation on upstream tubule segments and renal function.
Figure 4: Relationship between age and total kidney volume (TKV) in patients with autosomal dominant polycystic kidney disease.
Figure 5: Hypothetical inverse relationship between total kidney volume (TKV) and glomerular filtration rate (GFR) in patients with autosomal dominant polycystic kidney disease (ADPKD).
Figure 6: Hypothetical effect of starting therapy for autosomal dominant polycystic kidney disease (ADPKD) at 18 years or 35 years of age.

Similar content being viewed by others

References

  1. Grantham, J. J. Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 359, 1477–1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Franz, K. A. & Reubi, F. C. Rate of functional deterioration in polycystic kidney disease. Kidney Int. 23, 526–529 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Dalgaard, O. Z. Bilateral polycystic disease of the kidneys; a follow-up of 284 patients and their families. Dan. Med. Bull. 4, 128–133 (1957).

    CAS  PubMed  Google Scholar 

  4. Levine, E. & Grantham, J. J. The role of computed tomography in the evaluation of adult polycystic kidney disease. Am. J. Kidney Dis. 1, 99–105 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Gabow, P. A., Ikle, D. W. & Holmes, J. H. Polycystic kidney disease: prospective analysis of nonazotemic patients and family members. Ann. Intern. Med. 101, 238–247 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Grantham, J. J., Geiser, J. L. & Evan, A. P. Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int. 31, 1145–1152 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Torres, V. E. & Harris, P. C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 76, 149–168 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wallace, D. P. Cyclic AMP-mediated cyst expansion. Biochim. Biophys. Acta 1812, 1291–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Gattone, V. H., 2nd, Wang, X., Harris, P. C. & Torres, V. E. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat. Med. 9, 1323–1326 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, X., Wu, Y., Ward, C. J., Harris, P. C. & Torres, V. E. Vasopressin directly regulates cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 19, 102–108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meijer, E. et al. Copeptin, a surrogate marker of vasopressin, is associated with disease severity in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 361–368 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gardner, K. D. Jr & Evan, A. P. Renal cystic disease induced by diphenylthiazole. Kidney Int. 24, 43–52 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Gardner, K. D. Jr., Evan, A. P. & Reed, W. P. Accelerated renal cyst development in deconditioned germ-free rats. Kidney Int. 29, 1116–1123 (1986).

    Article  PubMed  Google Scholar 

  14. Gardner, K. D. Jr et al. Endotoxin provocation of experimental renal cystic disease. Kidney Int. 32, 329–334 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Grantham, J. J. Acquired cystic kidney disease. Kidney Int. 40, 143–152 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Carone, F. A. & Kanwar, Y. Tubular cell and matrix changes in renal cystic disease. Contrib. Nephrol. 101, 1–6 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Torres, V. E. & Harris, P. C. Polycystic kidney disease in 2011: connecting the dots toward a polycystic kidney disease therapy. Nat. Rev. Nephrol. 8, 66–68 (2012).

    Article  Google Scholar 

  18. Ong, A. C. & Harris, P. C. A polycystin-centric view of cyst formation and disease: the polycystins revisited. Kidney Int. 88, 699–710 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ecder, T. Cardiovascular complications in autosomal dominant polycystic kidney disease. Curr. Hypertens. Rev. 9, 2–11 (2013).

    Article  PubMed  Google Scholar 

  20. Nowak, K. L., Farmer, H., Cadnapaphornchai, M. A., Gitomer, B. & Chonchol, M. Vascular dysfunction in children and young adults with autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfw013 (2016).

  21. Merta, M. et al. Role of endothelin and nitric oxide in the pathogenesis of arterial hypertension in autosomal dominant polycystic kidney disease. Physiol. Res. 52, 433–437 (2003).

    CAS  PubMed  Google Scholar 

  22. Devuyst, O. & Torres, V. E. Osmoregulation, vasopressin, and cAMP signaling in autosomal dominant polycystic kidney disease. Curr. Opin. Nephrol. Hypertens. 22, 459–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Bichet, D. G. A defect in vasopressin secretion in autosomal dominant polycystic kidney disease. Kidney Int. 82, 1051–1053 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Nagao, S. et al. Renal activation of extracellular signal-regulated kinase in rats with autosomal-dominant polycystic kidney disease. Kidney Int. 63, 427–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, D. et al. Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 14, 2588–2595 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Meijer, E. et al. Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. Am. J. Kidney Dis. 56, 883–895 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Azurmendi, P. J. et al. Early renal and vascular changes in ADPKD patients with low-grade albumin excretion and normal renal function. Nephrol. Dial. Transplant. 24, 2458–2463 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Karihaloo, A. et al. Macrophages promote cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 22, 1809–1814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swenson-Fields, K. I. et al. Macrophages promote polycystic kidney disease progression. Kidney Int. 83, 855–864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cadnapaphornchai, M. A., McFann, K., Strain, J. D., Masoumi, A. & Schrier, R. W. Increased left ventricular mass in children with autosomal dominant polycystic kidney disease and borderline hypertension. Kidney Int. 74, 1192–1196 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Seeman, T. et al. Blood pressure and renal function in autosomal dominant polycystic kidney disease. Pediatr. Nephrol. 11, 592–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Fonseca, J. M. et al. Renal cyst growth is the main determinant for hypertension and concentrating deficit in Pkd1-deficient mice. Kidney Int. 85, 1137–1150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saigusa, T. et al. Activation of the intrarenal renin-angiotensin-system in murine polycystic kidney disease. Physiol. Rep. 3, e12405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grantham, J. J., Cook, L. T., Wetzel, L. H., Cadnapaphornchai, M. A. & Bae, K. T. Evidence of extraordinary growth in the progressive enlargement of renal cysts. Clin. J. Am. Soc. Nephrol. 5, 889–896 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harris, P. C. et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 17, 3013–3019 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Helal, I. et al. Serum uric acid, kidney volume and progression in autosomal-dominant polycystic kidney disease. Nephrol. Dial. Transplant. 28, 380–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Klawitter, J. et al. Bioactive lipid mediators in polycystic kidney disease. J. Lipid Res. 55, 1139–1149 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kistler, A. D. et al. Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study. PLoS ONE 8, e53016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grantham, J. J. et al. Determinants of renal volume in autosomal-dominant polycystic kidney disease. Kidney Int. 73, 108–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Heyer, C. M. et al. Predicted mutation strength of nontruncating PKD1 mutations aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 27, 2872–2884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hwang, Y. H. et al. Refining genotype-phenotype correlation in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 27, 1861–1868 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Harskamp, L. R. et al. Urinary EGF receptor ligand excretion in patients with autosomal dominant polycystic kidney disease and response to tolvaptan. Clin. J. Am. Soc. Nephrol. 10, 1749–1756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, C., Zhang, Y., Yuan, L., Fu, L. & Mei, C. Rosiglitazone inhibits insulin-like growth factor1-induced polycystic kidney disease cell growth and p70S6 kinase activation. Mol. Med. Rep. 8, 861–864 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Galarreta, C. I. et al. Tubular obstruction leads to progressive proximal tubular injury and atubular glomeruli in polycystic kidney disease. Am. J. Pathol. 184, 1957–1966 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayslett, J. P., Kashgarian, M. & Epstein, F. H. Functional correlates of compensatory renal hypertrophy. J. Clin. Invest. 47, 774–799 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ibrahim, H. N. et al. Long-term consequences of kidney donation. N. Engl. J. Med. 360, 459–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bricker, N. S. On the pathogenesis of the uremic state. An exposition of the “trade-off hypothesis”. N. Engl. J. Med. 286, 1093–1099 (1972).

    Article  CAS  PubMed  Google Scholar 

  48. Gansevoort, R. T. et al. Albuminuria and tolvaptan in autosomal-dominant polycystic kidney disease: results of the TEMPO 3:4 trial. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfv422 (2015).

  49. Torres, V. E. et al. Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2, 112–120 (2007).

    Article  PubMed  Google Scholar 

  50. King, B. F. et al. Quantification and longitudinal trends of kidney, renal cyst, and renal parenchyma volumes in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 11, 1505–1511 (2000).

    CAS  PubMed  Google Scholar 

  51. Sise, C. et al. Volumetric determination of progression in autosomal dominant polycystic kidney disease by computed tomography. Kidney Int. 58, 2492–2501 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Grantham, J. J., Chapman, A. B. & Torres, V. E. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin. J. Am. Soc. Nephrol. 1, 148–157 (2006).

    Article  PubMed  Google Scholar 

  53. Grantham, J. J. et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 354, 2122–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Chapman, A. B. et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 7, 479–486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Irazabal, M. V. et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J. Am. Soc. Nephrol. 26, 160–172 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Bhutani, H. et al. A comparison of ultrasound and magnetic resonance imaging shows that kidney length predicts chronic kidney disease in autosomal dominant polycystic kidney disease. Kidney Int. 88, 146–151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perrone, R. D. et al. Qualification of total kidney volume as a prognostic biomarker for use in clinical trials evaluating patients with polycystic kidney disease. Am. J. Kidney Dis. 63, B119 (2014).

    Google Scholar 

  58. U.S. Department of Health & Human Services, Food & Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research. Guidance for Industry Expedited Programs for Serious Conditions – Drugs and Biologics http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm358301.pdf (2014).

  59. Bonventre, J. V. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol. Dial. Transplant. 24, 3265–3268 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Trachtman, H. et al. Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr. Nephrol. 21, 989–994 (2006).

    Article  PubMed  Google Scholar 

  61. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Torres, V. E., Gansevoort, R. T. & Czerwiec, F. S. Tolvaptan in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 368, 1259 (2013).

    CAS  PubMed  Google Scholar 

  64. Grantham, J. J. et al. Tolvaptan suppresses monocyte chemotactic protein-1 in autosomal-dominant polycystic kidney disease. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfw060 (2016).

  65. Schrier, R. W. et al. Blood pressure in early autosomal dominant polycystic kidney disease. N. Engl. J. Med. 371, 2255–2266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Caroli, A. et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet 382, 1485–1495 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Meijer, E. et al. Rationale and design of the DIPAK 1 study: a randomized controlled clinical trial assessing the efficacy of lanreotide to Halt disease progression in autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 63, 446–455 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Cadnapaphornchai, M. A. et al. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 9, 889–896 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Torres, V. E. & Harris, P. C. Polycystic kidney disease: genes, proteins, animal models, disease mechanisms and therapeutic opportunities. J. Intern. Med. 261, 17–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Ong, A. C., Devuyst, O., Knebelmann, B., Walz, G. & ERA-EDTA Working Group for Inherited Kidney Diseases Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet 385, 1993–2002 (2015).

    Article  PubMed  Google Scholar 

  71. Torres, V. E. et al. Effect of tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: results from the TEMPO 3:4 trial. Clin. J. Am. Soc. Nephrol. 11, 803–811 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Irazabal, M. V. et al. Prognostic enrichment design in clinical trials for autosomal dominant polycystic kidney disease: the HALT-PKD clinical trial. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfw294 (2016).

  73. Grantham, J. J. Rationale for early treatment of polycystic kidney disease. Pediatr. Nephrol. 30, 1053–1062 (2015).

    Article  PubMed  Google Scholar 

  74. Cardiovascular and Renal Drugs Advisory Committee Tolvaptan: slowing progression of Autosomal Dominant Polycystic Kidney Disease (ADPKD) http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/UCM364583.pdf (2013).

  75. Lee, K. R., Grantham, J. J. & Cook, P. N. Volume estimation from computed tomography for polycystic kidney disease. Automedica 4, 75–79 (1981).

    Google Scholar 

  76. Thomsen, H. S., Madsen, J. K., Thaysen, J. H. & Damgaard-Petersen, K. Volume of polycystic kidneys during reduction of renal function. Urol. Radiol 3, 85–89 (1981).

    Article  CAS  PubMed  Google Scholar 

  77. Ruggenenti, P. et al. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int. 68, 206–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Antiga, L. et al. Computed tomography evaluation of autosomal dominant polycystic kidney disease progression: a progress report. Clin. J. Am. Soc. Nephrol. 1, 754–760 (2006).

    Article  PubMed  Google Scholar 

  79. Cadnapaphornchai, M. A., Masoumi, A., Strain, J. D., McFann, K. & Schrier, R. W. Magnetic resonance imaging of kidney and cyst volume in children with ADPKD. Clin. J. Am. Soc. Nephrol. 6, 369–376 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tokiwa, S., Muto, S., China, T. & Horie, S. The relationship between renal volume and renal function in autosomal dominant polycystic kidney disease. Clin. Exp. Nephrol. 15, 539–545 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Higashihara, E. et al. Renal disease progression in autosomal dominant polycystic kidney disease. Clin. Exp. Nephrol. 16, 622–628 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chen, D. et al. Clinical characteristics and disease predictors of a large Chinese cohort of patients with autosomal dominant polycystic kidney disease. PLoS ONE 9, e92232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.J.G and V.E.T contributed equally to researching data for the article, discussion of the content, and revising or editing the manuscript before submission.

Corresponding authors

Correspondence to Jared J. Grantham or Vicente E. Torres.

Ethics declarations

Competing interests

J.J.G and V.E.T have consulted for and received research grants from Otsuka Pharmaceutical Development and Commercialization, Inc.

PowerPoint slides

Glossary

Planar cell polarity

Planar polarization refers to the spatial orientation of a group of cells, whereby the cells and their structures are orientated within the same plane.

Desmopressin

A synthetic and highly specific vasopressin V2 agonist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grantham, J., Torres, V. The importance of total kidney volume in evaluating progression of polycystic kidney disease. Nat Rev Nephrol 12, 667–677 (2016). https://doi.org/10.1038/nrneph.2016.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.135

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research