Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Hyperosmolarity drives hypertension and CKD—water and salt revisited

Abstract

An epidemic of chronic kidney disease (CKD) in Mesoamerica is providing new insights into the mechanisms by which salt and water might drive hypertension and CKD. Increasingly, evidence suggests that recurrent dehydration and salt loss might be a mechanism that causes CKD, and experimental studies suggest a key role for increased plasma osmolarity in activating both intrarenal (polyol–fructokinase) and extrarenal (vasopressin) pathways that drive renal injury. Thus, we propose that water and salt might influence blood pressure and kidney disease through the timing and combination of their intake, which affect plasma osmolarity as well as intrarenal and extrarenal mechanisms of renal injury. The type of fluid intake might also be important, as fluids containing fructose can trigger activation of these pathways. Future studies should investigate the effects of salt, sugar and fluid intake on plasma osmolarity as a potential pathogenetic mechanism in renal injury and high blood pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic tubulointerstitial fibrosis in Mesoamerican nephropathy.
Figure 2: Physiological and pathophysiological effects of water depletion on the kidney.

Similar content being viewed by others

References

  1. Torres, C. et al. Decreased kidney function of unknown cause in Nicaragua: a community-based survey. Am. J. Kidney Dis. 55, 485–496 (2010).

    Article  PubMed  Google Scholar 

  2. Weiner, D. E., McClean, M. D., Kaufman, J. S. & Brooks, D. R. The Central American epidemic of CKD. Clin. J. Am. Soc. Nephrol. 8, 504–511 (2013).

    Article  PubMed  Google Scholar 

  3. Wesseling, C. et al. Resolving the enigma of the Mesoamerican nephropathy: a research workshop summary. Am. J. Kidney Dis. 63, 396–404 (2013).

    Article  PubMed  Google Scholar 

  4. Correa-Rotter, R., Wesseling, C. & Johnson, R. J. Chronic kidney disease of unknown origin in Central America: the case for a Mesoamerican nephropathy. Am. J. Kidney Dis. 63, 506–520 (2014).

    Article  PubMed  Google Scholar 

  5. O'Donnell, J. K. et al. Prevalence of and risk factors for chronic kidney disease in rural Nicaragua. Nephrol. Dial Transplant 26, 2798–2805 (2011).

    Article  PubMed  Google Scholar 

  6. Wijkstrom, J. et al. Clinical and pathological characterization of mesoamerican nephropathy: a new kidney disease in Central America. Am. J. Kidney Dis. 62, 908–918 (2013).

    Article  PubMed  Google Scholar 

  7. Dominguez, J., Moya Perez, C. & Jansa, J. M. Análisis de Prevalencia y Determinantes de la Insuficiencia Renal Crónica en la costa del Océano Pacífico: Sur de México, Guatemala, El Salvador y Honduras [Spanish]. (Agencia Municipal de Salut Pública, 2003).

  8. Garcia Trabiano, R. Nefropatía terminal en pacientes de un hospital de referencia en El Salvador [Spanish]. Rev. Panam. Salud Publica 12, 202–206 (2002).

    Article  Google Scholar 

  9. Peraza, S. et al. Decreased kidney function among agricultural workers in El Salvador. Am. J. Kidney Dis. 59, 531–540 (2012).

    Article  PubMed  Google Scholar 

  10. Solis, G. in Impacto de las medidas preventivas para evitar el deterioro de la función renal por el Síndrome de Golpe por Calor en trabajadores agrícolas del Ingenio San Antonio del Occidente de Nicaragua, Ciclo Agrícola 2005–2006 [Spanish]. Thesis, Universidad Nacional Autonoma de Nicaragua (2007).

  11. Roncal Jimenez, C. A. et al. Fructokinase activity mediates dehydration-induced renal injury. Kidney Int. http://dx.doi.org/10.1038/ki.2013.492 (2013).

  12. Nanayakkara, S. et al. Tubulointerstitial damage as the major pathological lesion in endemic chronic kidney disease among farmers in North Central Province of Sri Lanka. Environ. Health Prev. Med. 17, 213–221 (2012).

    Article  PubMed  Google Scholar 

  13. Schrier, R. W., Henderson, H. S., Tisher, C. C. & Tannen, R. L. Nephropathy associated with heat stress and exercise. Ann. Intern. Med. 67, 356–376 (1967).

    Article  CAS  PubMed  Google Scholar 

  14. Crowe, J. et al. Heat exposure in sugarcane harvesters in Costa Rica. Am. J. Ind. Med. 56, 1157–1164 (2013).

    Article  PubMed  Google Scholar 

  15. Bankir, L., Bouby, N. & Ritz, E. Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat. Rev. Nephrol 9, 223–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Bankir, L., Bichet, D. G. & Bouby, N. Vasopressin V2 receptors, ENaC, and sodium reabsorption: a risk factor for hypertension? Am. J. Physiol. Renal Physiol. 299, F917–F928 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Bardoux, P. et al. Vasopressin increases urinary albumin excretion in rats and humans: involvement of V2 receptors and the renin-angiotensin system. Nephrol. Dial. Transplant. 18, 497–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Bardoux, P. et al. Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. Proc. Natl Acad. Sci. USA 96, 10397–10402 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Burg, M. B. Molecular basis of osmotic regulation. Am. J. Physiol. 268, F983–F996 (1995).

    CAS  PubMed  Google Scholar 

  20. Schmolke, M., Schilling, A., Keiditsch, E. & Guder, W. G. Intrarenal distribution of organic osmolytes in human kidney. Eur. J. Clin. Chem. Clin. Biochem. 34, 499–501 (1996).

    CAS  PubMed  Google Scholar 

  21. Bouby, N., Bachmann, S., Bichet, D. & Bankir, L. Effect of water intake on the progression of chronic renal failure in the 5/6 nephrectomized rat. Am. J. Physiol. 258, F973–F979 (1990).

    CAS  PubMed  Google Scholar 

  22. Bardoux, P., Bruneval, P., Heudes, D., Bouby, N. & Bankir, L. Diabetes-induced albuminuria: role of antidiuretic hormone as revealed by chronic V2 receptor antagonism in rats. Nephrol. Dial. Transplant. 18, 1755–1763 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Bouby, N. et al. Vasopressin increases glomerular filtration rate in conscious rats through its antidiuretic action. J. Am. Soc. Nephrol. 7, 842–851 (1996).

    CAS  PubMed  Google Scholar 

  24. Schrier, R. W., Harris, D. C., Chan, L., Shapiro, J. I. & Caramelo, C. Tubular hypermetabolism as a factor in the progression of chronic renal failure. Am. J. Kidney Dis. 12, 243–249 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Lehninger, A. L. & Neubert, D. Effect of oxytocin, vasopressin, and other disulfide hormones on uptake and extrusion of water by mitochondria. Proc. Natl Acad. Sci. USA 47, 1929–1936 (1961).

    Article  CAS  PubMed  Google Scholar 

  26. Assimacopoulos-Jeannet, F., McCormack, J. G. & Jeanrenaud, B. Vasopressin and/or glucagon rapidly increases mitochondrial calcium and oxidative enzyme activities in the perfused rat liver. J. Biol. Chem. 261, 8799–8804 (1986).

    CAS  PubMed  Google Scholar 

  27. Bolignano, D. & Zoccali, C. Vasopressin beyond water: implications for renal diseases. Curr. Opin. Nephrol. Hypertens. 19, 499–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Burger-Kentischer, A. et al. Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells. Kidney Int. 55, 1417–1425 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Diggle, C. P. et al. Both isoforms of ketohexokinase are dispensable for normal growth and development. Physiol. Genomics 42A, 235–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Cirillo, P. et al. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells. J. Am. Soc. Nephrol. 20, 545–553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishimoto, T. et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc. Natl Acad. Sci. USA 109, 4320–4325 (2012).

    Article  PubMed  Google Scholar 

  32. Bergheim, I. et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J. Hepatol. 48, 983–992 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Johnson, R. J. et al. Fructokinase, fructans, intestinal permeability, and metabolic syndrome: an equine connection? J. Equine Vet. Sci. 33, 120–126 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ishimoto, T. et al. High fat and high sucrose (western) diet induce steatohepatitis that is dependent on fructokinase. Hepatology 58, 1632–1643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Diggle, C. P. et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J. Histochem. Cytochem. 57, 763–774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakayama, T. et al. Dietary fructose causes tubulointerstitial injury in the normal rat kidney. Am. J. Physiol. Renal Physiol. 298, F712–F720 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johner, S. A. et al. Urinary fructose: a potential biomarker for dietary fructose intake in children. Eur. J. Clin. Nutr. 64, 1365–1370 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Luceri, C. et al. Urinary excretion of sucrose and fructose as a predictor of sucrose intake in dietary intervention studies. Cancer Epidemiol. Biomarkers Prev. 5, 167–171 (1996).

    CAS  PubMed  Google Scholar 

  39. Aoyama, M. et al. Fructose induces tubulointerstitial injury in the kidney of mice. Biochem. Biophys. Res. Commun. 419, 244–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Gersch, M. S. et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am. J. Physiol. Renal Physiol. 293, F1256–F1261 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ko, B. C., Ruepp, B., Bohren, K. M., Gabbay, K. H. & Chung, S. S. Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene. J. Biol. Chem. 272, 16431–16437 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Lanaspa, M. A. et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J. Am. Soc. Nephrol. (in press).

  43. de Wardener, H. E., He, F. J. & MacGregor, G. A. Plasma sodium and hypertension. Kidney Int. 66, 2454–2466 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Imig, J. D. & Ryan, M. J. Immune and inflammatory role in renal disease. Compr. Physiol. 3, 957–976 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Shapiro, L. & Dinarello, C. A. Osmotic regulation of cytokine synthesis in vitro. Proc. Natl Acad. Sci. USA 92, 12230–12234 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Shapiro, L. & Dinarello, C. A. Hyperosmotic stress as a stimulant for proinflammatory cytokine production. Exp. Cell Res. 231, 354–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Ying, W. Z. & Sanders, P. W. Dietary salt modulates renal production of transforming growth factor-β in rats. Am. J. Physiol. 274, F635–F641 (1998).

    CAS  PubMed  Google Scholar 

  48. Gu, J. W. et al. Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells. Hypertension 31, 1083–1087 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Toney, G. M. & Stocker, S. D. Hyperosmotic activation of CNS sympathetic drive: implications for cardiovascular disease. J. Physiol. 588, 3375–3384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mathai, M. L., Evered, M. D. & McKinley, M. J. Central losartan blocks natriuretic, vasopressin, and pressor responses to central hypertonic NaCl in sheep. Am. J. Physiol. 275, R548–R554 (1998).

    CAS  PubMed  Google Scholar 

  51. O'Donaughy, T. L. & Brooks, V. L. Deoxycorticosterone acetate-salt rats: hypertension and sympathoexcitation driven by increased NaCl levels. Hypertension 47, 680–685 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Friedman, S. M., McIndoe, R. A. & Tanaka, M. The relation of blood sodium concentration to blood pressure in the rat. J. Hypertens. 8, 61–66 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Suckling, R. J., He, F. J., Markandu, N. D. & MacGregor, G. A. Dietary salt influences postprandial plasma sodium concentration and systolic blood pressure. Kidney Int. 81, 407–411 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Dickinson, K. M., Clifton, P. M., Burrell, L. M., Barrett, P. H. & Keogh, J. B. Postprandial effects of a high salt meal on serum sodium, arterial stiffness, markers of nitric oxide production and markers of endothelial function. Atherosclerosis 232, 211–216 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Wenner, M. M., Rose, W. C., Delaney, E. P., Stillabower, M. E. & Farquhar, W. B. Influence of plasma osmolality on baroreflex control of sympathetic activity. Am. J. Physiol. Heart Circ. Physiol. 293, H2313–H2319 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Charkoudian, N., Eisenach, J. H., Joyner, M. J., Roberts, S. K. & Wick, D. E. Interactions of plasma osmolality with arterial and central venous pressures in control of sympathetic activity and heart rate in humans. Am. J. Physiol. Heart Circ. Physiol. 289, H2456–H2460 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Kopp, C. et al. 23Na magnetic resonance imaging of tissue sodium. Hypertension 59, 167–172 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Beduschi, G. C., Telini, L. S., Caramori, J. C., Martin, L. C. & Barretti, P. Effect of dialysate sodium reduction on body water volume, blood pressure, and inflammatory markers in hemodialysis patients—a prospective randomized controlled study. Ren. Fail. 35, 742–747 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nature Rev. Neurosci. 9, 519–531 (2008).

    Article  CAS  Google Scholar 

  60. Lechner, S. G. et al. The molecular and cellular identity of peripheral osmoreceptors. Neuron 69, 332–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. McMahon, E. J. et al. A randomized trial of dietary sodium restriction in CKD. J. Am. Soc. Nephrol. 24, 2096–2103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krikken, J. A., Laverman, G. D. & Navis, G. Benefits of dietary sodium restriction in the management of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 18, 531–538 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Lambers Heerspink, H. J., Navis, G. & Ritz, E. Salt intake in kidney disease- a missed therapeutic opportunity? Nephrol. Dial. Transplant. 27, 3435–3442 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Aaron, K. J. & Sanders, P. W. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin. Proc. 88, 987–995 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Jones-Burton, C. et al. An in-depth review of the evidence linking dietary salt intake and progression of chronic kidney disease. Am. J. Nephrol. 26, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Cook, N. R. et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ 334, 885–894 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Vegter, S. et al. Sodium intake, ACE inhibition, and progression to ESRD. J. Am. Soc. Nephrol. 23, 165–173 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Alderman, M. H., Madhavan, S., Cohen, H., Sealey, J. E. & Laragh, J. H. Low urinary sodium is associated with greater risk of myocardial infarction among treated hypertensive men. Hypertension 25, 1144–1152 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Ekinci, E. I. et al. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care 34, 703–709 (2011).

    Article  PubMed  Google Scholar 

  70. Thomas, M. C. et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34, 861–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Clark, W. F. et al. Urine volume and change in estimated GFR in a community-based cohort study. Clin. J. Am. Soc. Nephrol. 6, 2634–2641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Strippoli, G. F. et al. Fluid and nutrient intake and risk of chronic kidney disease. Nephrology 16, 326–334 (2011).

    Article  PubMed  Google Scholar 

  73. Sontrop, J. M. et al. Association between water intake, chronic kidney disease, and cardiovascular disease: a cross-sectional analysis of NHANES data. Am. J. Nephrol. 37, 434–442 (2013).

    Article  PubMed  Google Scholar 

  74. Palmer, S. C. et al. Fluid intake and all-cause mortality, cardiovascular mortality, and kidney function: a population-based longitudinal cohort study. Nephrol. Dial Transplant http://dx.doi.org/10.1093/ndt/gft507 (2014).

  75. Hebert, L. A., Greene, T., Levey, A., Falkenhain, M. E. & Klahr, S. High urine volume and low urine osmolality are risk factors for faster progression of renal disease. Am. J. Kidney Dis. 41, 962–971 (2003).

    Article  PubMed  Google Scholar 

  76. McMahon, E. J., Campbell, K. L., Mudge, D. W. & Bauer, J. D. Achieving salt restriction in chronic kidney disease. Int. J. Nephrol. 2012, 720429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Choukroun, G., Schmitt, F., Martinez, F., Drueke, T. B. & Bankir, L. Low urine flow reduces the capacity to excrete a sodium load in humans. Am. J. Physiol. 273, R1726–R1733 (1997).

    CAS  PubMed  Google Scholar 

  78. Perucca, J., Bouby, N., Valeix, P. & Bankir, L. Sex difference in urine concentration across differing ages, sodium intake, and level of kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R700–R705 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Zerbe, R. L. & Robertson, G. L. Osmoregulation of thirst and vasopressin secretion in human subjects: effect of various solutes. Am. J. Physiol. 244, E607–E614 (1983).

    CAS  PubMed  Google Scholar 

  80. Wolf, J. P., Nguyen, N. U., Dumoulin, G. & Berthelay, S. Influence of hypertonic monosaccharide infusions on the release of plasma arginine vasopressin in normal humans. Horm. Metab. Res. 24, 379–383 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Shafiee, M. A. et al. Defining conditions that lead to the retention of water: the importance of the arterial sodium concentration. Kidney Int. 67, 613–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Robertson, G. L. Abnormalities of thirst regulation. Kidney Int. 25, 460–469 (1984).

    Article  CAS  PubMed  Google Scholar 

  83. Zerbe, R. L., Miller, J. Z. & Robertson, G. L. The reproducibility and heritability of individual differences in osmoregulatory function in normal human subjects. J. Lab. Clin. Med. 117, 51–59 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.J.J.'s research work is funded by the University of Colorado, Denver, CO, USA, and NIH grant funding. L.G.S.-L.'s work is funded by CONACyT Mexico (No. 133232).

Author information

Authors and Affiliations

Authors

Contributions

R.J.J., L.B. and L.G.S.-L. researched the data for the article. All authors contributed to the discussion of the article's content, after which R.J.J., B.R.-I., L.B. and L.G.S.-L. wrote the manuscript. R.J.J., B.R.-I., T.I., T.N., R.C.-R., C.W., L.B. and L.G.S.-L. edited the manuscript before submission.

Corresponding author

Correspondence to Richard J. Johnson.

Ethics declarations

Competing interests

R.J.J. and M.A.L. are inventors on patent applications related to blocking fructokinase in the treatment of kidney disease and metabolic syndrome from the University of Colorado (US2013/0195886 and US2013/0224218). R.J.J. is on the Scientific Advisory Board of Amway, the Scientific Board of XORT Therapeutics and of Rivermend Health. R.J.J. has also received research funding from Danone Research and Amway. R.J.J., C.R. J., M.A.L. and L.G.S. L. are members of Colorado Research Partners. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, R., Rodriguez-Iturbe, B., Roncal-Jimenez, C. et al. Hyperosmolarity drives hypertension and CKD—water and salt revisited. Nat Rev Nephrol 10, 415–420 (2014). https://doi.org/10.1038/nrneph.2014.76

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.76

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing