Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Mini review series: Current topic in Hypertension
  • Published:

Fluid homeostasis induced by sodium-glucose cotransporter 2 inhibitors: novel insight for better cardio-renal outcomes in chronic kidney disease

Abstract

Hypertension in chronic kidney disease (CKD) patients is a risk factor for end-stage renal disease, cardiovascular events, and mortality. Thus, the prevention and appropriate management of hypertension in these patients are essential strategies for better cardio-renal outcomes. In this review, we show novel risk factors for hypertension with CKD, several promising prognostic markers and treatment for cardio-renal outcomes. Of note, the clinical use of sodium-glucose cotransporter 2 (SGLT2) inhibitors has recently expanded to non-diabetic patients with CKD and heart failure as well as diabetic patients. SGLT2 inhibitors have an antihypertensive effect, but are also associated with a low risk of hypotension. This unique mechanism of blood pressure regulation by SGLT2 inhibitors may partially depend on body fluid homeostasis, which is mediated by the autoregulation property between “accelerator” (diuretic action) and “brake” (increase in anti-diuretic hormone vasopressin and fluid intake). Mineralocorticoid receptor (MR) blockers are used in the treatment of essential hypertension and hyperaldosteronism. Recently, a new MR blocker, finerenone, has been launched as a treatment for CKD with type 2 diabetes. These advances in relation to hypertension in CKD may contribute to the reduction of renal and cardiovascular events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Toto RD. Treatment of hypertension in chronic kidney disease. Semin Nephrol. 2005;25:435–9.

    Article  PubMed  Google Scholar 

  2. Muntner P, Anderson A, Charleston J, Chen Z, Ford V, Makos G, et al. Hypertension awareness, treatment, and control in adults with CKD: results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2010;55:441–51.

    Article  CAS  PubMed  Google Scholar 

  3. Townsend RR, Taler SJ. Management of hypertension in chronic kidney disease. Nat Rev Nephrol. 2015;11:555–63.

    Article  PubMed  Google Scholar 

  4. Mogi M, Maruhashi T, Higashi Y, Masuda T, Nagata D, Nagai M, et al. Update on hypertension research in 2021. Hypertens Res. 2022;45:1276–97.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin Z, Zhou Z, Liu Y, Gong Q, Yan X, Xiao J, et al. Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese. PLoS One. 2011;6:e18398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kohara M, Masuda T, Shiizaki K, Akimoto T, Watanabe Y, Honma S, et al. Association between circulating fibroblast growth factor 21 and mortality in end-stage renal disease. PLoS One. 2017;12:e0178971.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matsui M, Kosaki K, Kuro OM, Saito C, Yamagata K, Maeda S. Circulating fibroblast growth factor 21 links hemodynamics with kidney function in middle-aged and older adults: a mediation analysis. Hypertens Res. 2022;45:125–34.

    Article  CAS  PubMed  Google Scholar 

  8. Funakoshi S, Satoh A, Maeda T, Kawazoe M, Ishida S, Yoshimura C, et al. Eating before bed and new-onset hypertension in a Japanese population: the Iki city epidemiological study of atherosclerosis and chronic kidney disease. Hypertens Res. 2021;44:1662–7.

    Article  PubMed  Google Scholar 

  9. Matsukuma Y, Nakayama M, Tsuda S, Fukui A, Yoshitomi R, Tsuruya K, et al. Association between the urinary sodium-to-potassium ratio and renal outcomes in patients with chronic kidney disease: a prospective cohort study. Hypertens Res. 2021;44:1492–504.

    Article  CAS  PubMed  Google Scholar 

  10. Tsuboi N, Sasaki T, Okabayashi Y, Haruhara K, Kanzaki G, Yokoo T. Assessment of nephron number and single-nephron glomerular filtration rate in a clinical setting. Hypertens Res. 2021;44:605–17.

    Article  PubMed  Google Scholar 

  11. Hoy WE, Rees M, Kile E, Mathews JD, McCredie DA, Pugsley DJ, et al. Low birthweight and renal disease in Australian aborigines. Lancet. 1998;352:1826–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lackland DT, Bendall HE, Osmond C, Egan BM, Barker DJ. Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med. 2000;160:1472–6.

    Article  CAS  PubMed  Google Scholar 

  13. Kanzaki G, Puelles VG, Cullen-McEwen LA, Hoy WE, Okabayashi Y, Tsuboi N, et al. New insights on glomerular hyperfiltration: a Japanese autopsy study. JCI Insight. 2017;2:e94334.

  14. Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol. 2020;16:317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vallon V, Verma S. Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu Rev Physiol. 2021;83:503–28.

    Article  CAS  PubMed  Google Scholar 

  16. Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Ren Physiol. 2014;306:F194–204.

    Article  CAS  Google Scholar 

  17. Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124:499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiu H, Novikov A, Vallon V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: basic mechanisms and therapeutic perspectives. Diabetes Metab Res Rev. 2017;33:e2886.

  19. Bohm M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ, et al. Empagliflozin improves cardiovascular and renal outcomes in heart failure irrespective of systolic blood pressure. J Am Coll Cardiol. 2021;78:1337–48.

    Article  PubMed  Google Scholar 

  20. Nagasu H, Yano Y, Kanegae H, Heerspink HJL, Nangaku M, Hirakawa Y, et al. Kidney outcomes associated with SGLT2 inhibitors versus other glucose-lowering drugs in real-world clinical practice: The Japan Chronic Kidney Disease Database. Diabetes Care. 2021;44:2542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N. Engl J Med. 2020;383:1436–46.

    Article  CAS  PubMed  Google Scholar 

  22. Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, et al. Empagliflozin in patients with Chronic Kidney Disease. N Engl J Med. 2023;388:117–27.

  23. Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialistsʼ Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet. 2022;400:1788–801.

  24. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl J Med. 2020;383:1413–24.

    Article  CAS  PubMed  Google Scholar 

  25. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl J Med. 2019;381:1995–2008.

    Article  CAS  PubMed  Google Scholar 

  26. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl J Med. 2021;385:1451–61.

    Article  CAS  PubMed  Google Scholar 

  27. Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl J Med. 2022;387:1089–98.

    Article  PubMed  Google Scholar 

  28. Anker SD, Butler J, Filippatos G, Khan MS, Marx N, Lam CSP, et al. Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status: results from the EMPEROR-reduced trial. Circulation. 2021;143:337–49.

    Article  CAS  PubMed  Google Scholar 

  29. Tomita I, Kume S, Sugahara S, Osawa N, Yamahara K, Yasuda-Yamahara M, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab. 2020;32:404–19.e406.

    Article  CAS  PubMed  Google Scholar 

  30. Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation. 2022;146:1383–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65:1190–5.

    Article  CAS  PubMed  Google Scholar 

  32. Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, et al. Targeting mitochondria-inflammation circuit by beta-hydroxybutyrate mitigates HFpEF. Circ Res. 2021;128:232–45.

    Article  CAS  PubMed  Google Scholar 

  33. Masuda T, Watanabe Y, Fukuda K, Watanabe M, Onishi A, Ohara K, et al. Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat. Am J Physiol Ren Physiol. 2018;315:F653–64.

    Article  CAS  Google Scholar 

  34. Masuda T, Muto S, Fukuda K, Watanabe M, Ohara K, Koepsell H, et al. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep. 2020;8:e14360.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yasui A, Lee G, Hirase T, Kaneko T, Kaspers S, von Eynatten M, et al. Empagliflozin induces transient diuresis without changing long-term overall fluid balance in Japanese patients with type 2 diabetes. Diabetes Ther. 2018;9:863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iijima H, Kifuji T, Maruyama N, Inagaki N. Pharmacokinetics, pharmacodynamics, and safety of canagliflozin in Japanese patients with type 2 diabetes mellitus. Adv Ther. 2015;32:768–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Masuda T, Ohara K, Murakami T, Imai T, Nakagawa S, Okada M, et al. Sodium-glucose cotransporter 2 inhibition with dapagliflozin ameliorates extracellular volume expansion in diabetic kidney disease patients. POJ Diabetes Obes. 2017;1:1–8.

    Google Scholar 

  38. Ohara K, Masuda T, Morinari M, Okada M, Miki A, Nakagawa S, et al. The extracellular volume status predicts body fluid response to SGLT2 inhibitor dapagliflozin in diabetic kidney disease. Diabetol Metab Syndr. 2020;12:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Masuda T, Nagata D. Recent advances in the management of secondary hypertension: chronic kidney disease. Hypertens Res. 2020;43:869–75.

    Article  PubMed  Google Scholar 

  40. Masuda T, Ohara K, Vallon V, Nagata D. SGLT2 inhibitor and loop diuretic induce different vasopressin and fluid homeostatic responses in nondiabetic rats. Am J Physiol Ren Physiol. 2022;323:F361–9.

    Article  CAS  Google Scholar 

  41. Marton A, Kaneko T, Kovalik JP, Yasui A, Nishiyama A, Kitada K, et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol. 2021;17:65–77.

    Article  CAS  PubMed  Google Scholar 

  42. Feraille E, Sassi A, Olivier V, Arnoux G, Martin PY. Renal water transport in health and disease. Pflug Arch. 2022;474:841–52.

    Article  CAS  Google Scholar 

  43. Scholtes RA, Muskiet MHA, van Baar MJB, Hesp AC, Greasley PJ, Hammarstedt A, et al. The adaptive renal response for volume homeostasis during 2 weeks of dapagliflozin treatment in people with type 2 diabetes and preserved renal function on a sodium-controlled diet. Kidney Int Rep. 2022;7:1084–92.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mahon WA, Holland J, Urowitz MB. Hyperosmolar, non-ketotic diabetic coma. Can Med Assoc J. 1968;99:1090–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayama N, Wang W, Schneider EG. Osmolality-induced changes in aldosterone secretion involve a chloride-dependent process. Am J Physiol. 1995;268:R8–13.

    CAS  PubMed  Google Scholar 

  46. Schork A, Saynisch J, Vosseler A, Jaghutriz BA, Heyne N, Peter A, et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18:46.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tuttle KR, Brosius FC 3rd, Cavender MA, Fioretto P, Fowler KJ, Heerspink HJL, et al. SGLT2 inhibition for CKD and cardiovascular disease in type 2 diabetes: report of a scientific workshop sponsored by the national kidney foundation. Diabetes. 2021;70:1–16.

    Article  CAS  PubMed  Google Scholar 

  48. Watso JC, Farquhar WB. Hydration Status and Cardiovascular Function. Nutrients. 2019;11:1866.

  49. Shibata S, Ishizawa K, Uchida S. Mineralocorticoid receptor as a therapeutic target in chronic kidney disease and hypertension. Hypertens Res. 2017;40:221–5.

    Article  CAS  PubMed  Google Scholar 

  50. Jia G, Aroor AR, Sowers JR. The role of mineralocorticoid receptor signaling in the cross-talk between adipose tissue and the vascular wall. Cardiovasc Res. 2017;113:1055–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Munoz-Durango N, Arrese M, Hernandez A, Jara E, Kalergis AM, Cabrera D. A mineralocorticoid receptor deficiency in myeloid cells reduces liver steatosis by impairing activation of CD8(+) T cells in a nonalcoholic steatohepatitis mouse model. Front Immunol. 2020;11:563434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goodfriend TL, Egan BM, Kelley DE. Plasma aldosterone, plasma lipoproteins, obesity and insulin resistance in humans. Prostaglandins Leukot Ess Fat Acids. 1999;60:401–5.

    Article  CAS  Google Scholar 

  53. Krug AW, Stelzner L, Rao AD, Lichtman AH, Williams GH, Adler GK. Effect of low dose mineralocorticoid receptor antagonist eplerenone on glucose and lipid metabolism in healthy adult males. Metabolism. 2013;62:386–91.

    Article  CAS  PubMed  Google Scholar 

  54. Johansen ML, Schou M, Rossignol P, Holm MR, Rasmussen J, Brandt N, et al. Effect of the mineralocorticoid receptor antagonist eplerenone on liver fat and metabolism in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial (MIRAD trial). Diabetes Obes Metab. 2019;21:2305–14.

    Article  CAS  PubMed  Google Scholar 

  55. Paul SN, Wingenfeld K, Otte C, Meijer OC. Brain mineralocorticoid receptor in health and disease: from molecular signalling to cognitive and emotional function. Br J Pharm. 2022;179:3205–19.

    Article  CAS  Google Scholar 

  56. Nishiyama A. Pathophysiological mechanisms of mineralocorticoid receptor-dependent cardiovascular and chronic kidney disease. Hypertens Res. 2019;42:293–300.

    Article  CAS  PubMed  Google Scholar 

  57. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl J Med. 2003;348:1309–21.

    Article  CAS  PubMed  Google Scholar 

  58. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl J Med. 1999;341:709–17.

    Article  CAS  PubMed  Google Scholar 

  59. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.

    Article  CAS  PubMed  Google Scholar 

  60. Shibata S, Mu S, Kawarazaki H, Muraoka K, Ishizawa K, Yoshida S, et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Invest. 2011;121:3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamada M, Takei M, Suzuki E, Takakusa H, Kotsuma M, Washio T, et al. Pharmacokinetics, distribution, and disposition of esaxerenone, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist, in rats and monkeys. Xenobiotica. 2017;47:1090–103.

    Article  CAS  PubMed  Google Scholar 

  62. Ito S, Itoh H, Rakugi H, Okuda Y, Iijima S. Antihypertensive effects and safety of esaxerenone in patients with moderate kidney dysfunction. Hypertens Res. 2021;44:489–97.

    Article  CAS  PubMed  Google Scholar 

  63. Kario K, Ito S, Itoh H, Rakugi H, Okuda Y, Yoshimura M, et al. Effect of the nonsteroidal mineralocorticoid receptor blocker, esaxerenone, on nocturnal hypertension: a post hoc analysis of the ESAX-HTN study. Am J Hypertens. 2021;34:540–51.

    Article  CAS  PubMed  Google Scholar 

  64. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl J Med. 2020;383:2219–29.

    Article  CAS  PubMed  Google Scholar 

  65. Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl J Med. 2021;385:2252–63.

    Article  CAS  PubMed  Google Scholar 

  66. Rakugi H, Yamakawa S, Sugimoto K. Management of hyperkalemia during treatment with mineralocorticoid receptor blockers: findings from esaxerenone. Hypertens Res. 2021;44:371–85.

    Article  CAS  PubMed  Google Scholar 

  67. Shikata K, Ito S, Kashihara N, Nangaku M, Wada T, Okuda Y, et al. Reduction in the magnitude of serum potassium elevation in combination therapy with esaxerenone (CS-3150) and sodium-glucose cotransporter 2 inhibitor in patients with diabetic kidney disease: subanalysis of two phase III studies. J Diabetes Investig. 2022;13:1190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TM conceptualized this review and drafted the manuscript. TM and DN approved the final version of the manuscript.

Corresponding author

Correspondence to Takahiro Masuda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, T., Nagata, D. Fluid homeostasis induced by sodium-glucose cotransporter 2 inhibitors: novel insight for better cardio-renal outcomes in chronic kidney disease. Hypertens Res 46, 1195–1201 (2023). https://doi.org/10.1038/s41440-023-01220-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01220-2

Keywords

This article is cited by

Search

Quick links