Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammatory processes in renal fibrosis

Key Points

  • Renal inflammation is a protective response that is induced following kidney injury, which seeks to eliminate the cause of injury and establish tissue repair

  • In the absence of resolution, ongoing inflammation involving infiltrating leukocytes in conjunction with activation of intrinsic renal cells results in the production of profibrotic cytokines and growth factors

  • These profibrotic cytokines and growth factors, in turn, recruit and activate myofibroblasts, which cause progressive glomerular and interstitial fibrosis, leading to end-stage renal disease

  • Glomerular and interstitial fibrosis occur sequentially and share a number of common pathogenetic mechanisms, but the link between glomerular inflammation and interstitial fibrosis is poorly understood

  • Macrophages drive fibrosis during ongoing kidney, injury but have the capacity to promote renal repair when the underlying injury can be resolved

Abstract

Many types of kidney injury induce inflammation as a protective response. However, unresolved inflammation promotes progressive renal fibrosis, which can culminate in end-stage renal disease. Kidney inflammation involves cells of the immune system as well as activation of intrinsic renal cells, with the consequent production and release of profibrotic cytokines and growth factors that drive the fibrotic process. In glomerular diseases, the development of glomerular inflammation precedes interstitial fibrosis; although the mechanisms linking these events are poorly understood, an important role for tubular epithelial cells in mediating this link is gaining support. Data have implicated macrophages in promoting both glomerular and interstitial fibrosis, whereas limited evidence suggests that CD4+ T cells and mast cells are involved in interstitial fibrosis. However, macrophages can also promote renal repair when the cause of renal injury can be resolved, highlighting their plasticity. Understanding the mechanisms by which inflammation drives renal fibrosis is necessary to facilitate the development of therapeutics to halt the progression of chronic kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evidence for local macrophage accumulation and renal fibrosis.
Figure 2: The role of macrophages in renal fibrosis.
Figure 3: Tubular cell activation in interstitial inflammation and fibrosis.

Similar content being viewed by others

References

  1. Risdon, R. A., Sloper, J. C. & De Wardener, H. E. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 2, 363–366 (1968).

    CAS  PubMed  Google Scholar 

  2. Bohle, A., Bader, R., Grund, K. E., Mackensen, S. & Neunhoeffer, J. Serum creatinine concentration and renal interstitial volume. Analysis of correlations in endocapillary (acute) glomerulonephritis and in moderately severe mesangioproliferative glomerulonephritis. Virchows Arch. A Pathol. Anat. Histol. 375, 87–96 (1977).

    CAS  PubMed  Google Scholar 

  3. Mackensen-Haen, S., Bader, R., Grund, K. E. & Bohle, A. Correlations between renal cortical interstitial fibrosis, atrophy of the proximal tubules and impairment of the glomerular filtration rate. Clin. Nephrol. 15, 167–171 (1981).

    CAS  PubMed  Google Scholar 

  4. Bader, R. et al. Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol. Res. Pract. 167, 204–216 (1980).

    CAS  PubMed  Google Scholar 

  5. Seron, D., Alexopoulos, E., Raftery, M. J., Hartley, B. & Cameron, J. S. Number of interstitial capillary cross-sections assessed by monoclonal antibodies: relation to interstitial damage. Nephrol. Dial. Transplant. 5, 889–893 (1990).

    CAS  PubMed  Google Scholar 

  6. Nikolic-Paterson, D. J. & Atkins, R. C. The role of macrophages in glomerulonephritis. Nephrol. Dial. Transplant. 16 (Suppl. 5), 3–7 (2001).

    CAS  PubMed  Google Scholar 

  7. Lan, H. Y., Nikolic-Paterson, D. J., Mu, W. & Atkins, R. C. Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int. 48, 753–760 (1995).

    CAS  PubMed  Google Scholar 

  8. Yang, N. et al. Local macrophage proliferation in human glomerulonephritis. Kidney Int. 54, 143–151 (1998).

    CAS  PubMed  Google Scholar 

  9. Isbel, N. M., Nikolic-Paterson, D. J., Hill, P. A., Dowling, J. & Atkins, R. C. Local macrophage proliferation correlates with increased renal M-CSF expression in human glomerulonephritis. Nephrol. Dial. Transplant. 16, 1638–1647 (2001).

    CAS  PubMed  Google Scholar 

  10. Ikezumi, Y. et al. The sialoadhesin (CD169) expressing a macrophage subset in human proliferative glomerulonephritis. Nephrol. Dial. Transplant. 20, 2704–2713 (2005).

    CAS  PubMed  Google Scholar 

  11. Eardley, K. S. et al. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int. 74, 495–504 (2008).

    PubMed  Google Scholar 

  12. Yu, X. Q. et al. A functional role for osteopontin in experimental crescentic glomerulonephritis in the rat. Proc. Assoc. Am. Physicians 110, 50–64 (1998).

    CAS  PubMed  Google Scholar 

  13. Lloyd, C. M. et al. RANTES and monocyte chemoattractant protein 1 (MCP 1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP 1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med. 185, 1371–1380 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lan, H. Y. et al. The pathogenic role of macrophage migration inhibitory factor in immunologically induced kidney disease in the rat. J. Exp. Med. 185, 1455–1465 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo, S. et al. Macrophages are essential contributors to kidney injury in murine cryoglobulinemic membranoproliferative glomerulonephritis. Kidney Int. 80, 946–958 (2011).

    CAS  PubMed  Google Scholar 

  16. Chow, F. Y. et al. Monocyte chemoattractant protein 1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 69, 73–80 (2006).

    CAS  PubMed  Google Scholar 

  17. You, H., Gao, T., Cooper, T. K., Reeves, W. B. & Awad, A. S. Macrophages directly mediate diabetic renal injury. Am. J. Physiol. Renal Physiol. 305, F1719–F1727 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, Y., Ma, F. Y., Tesch, G. H., Manthey, C. L. & Nikolic-Paterson, D. J. c-fms Blockade reverses glomerular macrophage infiltration and halts development of crescentic anti-GBM glomerulonephritis in the rat. Lab. Invest. 91, 978–991 (2011).

    CAS  PubMed  Google Scholar 

  19. Ko, G. J., Boo, C. S., Jo, S. K., Cho, W. Y. & Kim, H. K. Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol. Dial. Transplant. 23, 842–852 (2008).

    CAS  PubMed  Google Scholar 

  20. Kitamoto, K. et al. Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J. Pharmacol. Sci. 111, 285–292 (2009).

    CAS  PubMed  Google Scholar 

  21. Castano, A. P. et al. Serum amyloid P inhibits fibrosis through FcγR. dependent monocyte-macrophage regulation in vivo. Sci. Transl. Med. 1, 5ra13 (2009).

    PubMed  PubMed Central  Google Scholar 

  22. Vernon, M. A., Mylonas, K. J. & Hughes, J. Macrophages and renal fibrosis. Semin. Nephrol. 30, 302–317 (2010).

    CAS  PubMed  Google Scholar 

  23. Anders, H. J. & Ryu, M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80, 915–925 (2011).

    CAS  PubMed  Google Scholar 

  24. Noronha, I. L., Kruger, C., Andrassy, K., Ritz, E. & Waldherr, R. In situ production of TNF-α, IL-1β and IL-2R in ANCA-positive glomerulonephritis. Kidney Int. 43, 682–692 (1993).

    CAS  PubMed  Google Scholar 

  25. Ma, F. Y. et al. Blockade of the c Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat. Lab. Invest. 89, 470–484 (2009).

    CAS  PubMed  Google Scholar 

  26. Tipping, P. G., Lowe, M. G. & Holdsworth, S. R. Glomerular macrophages express augmented procoagulant activity in experimental fibrin-related glomerulonephritis in rabbits. J. Clin. Invest. 82, 1253–1259 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lan, H. Y., Nikolic-Paterson, D. J., Zarama, M., Vannice, J. L. & Atkins, R. C. Suppression of experimental crescentic glomerulonephritis by the interleukin 1 receptor antagonist. Kidney Int. 43, 479–485 (1993).

    CAS  PubMed  Google Scholar 

  28. Lan, H. Y. et al. TNF-α up-regulates renal MIF expression in rat crescentic glomerulonephritis. Mol. Med. 3, 136–144 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaneko, Y. et al. Macrophage metalloelastase as a major factor for glomerular injury in anti-glomerular basement membrane nephritis. J. Immunol. 170, 3377–3385 (2003).

    CAS  PubMed  Google Scholar 

  30. Ikezumi, Y., Atkins, R. C. & Nikolic-Paterson, D. J. Interferon-γ augments acute macrophage-mediated renal injury via a glucocorticoid-sensitive mechanism. J. Am. Soc. Nephrol. 14, 888–898 (2003).

    CAS  PubMed  Google Scholar 

  31. Wang, Y. et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int. 72, 290–299 (2007).

    CAS  PubMed  Google Scholar 

  32. Ikezumi, Y., Hurst, L., Atkins, R. C. & Nikolic-Paterson, D. J. Macrophage-mediated renal injury is dependent on signaling via the JNK pathway. J. Am. Soc. Nephrol. 15, 1775–1784 (2004).

    CAS  PubMed  Google Scholar 

  33. Ma, F. Y. et al. A pathogenic role for c Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J. Am. Soc. Nephrol. 18, 472–484 (2007).

    CAS  PubMed  Google Scholar 

  34. Wilson, H. M. et al. Inhibition of macrophage nuclear factor-κB leads to a dominant anti-inflammatory phenotype that attenuates glomerular inflammation in vivo. Am. J. Pathol. 167, 27–37 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Anders, H. J. et al. Activation of toll-like receptor 9 induces progression of renal disease in MRL-Fas(lpr) mice. FASEB. J. 18, 534–536 (2004).

    CAS  PubMed  Google Scholar 

  36. Han, Y., Ma, F. Y., Tesch, G. H., Manthey, C. L. & Nikolic-Paterson, D. J. Role of macrophages in the fibrotic phase of rat crescentic glomerulonephritis. Am. J. Physiol. Renal Physiol. 304, F1043–F1053 (2013).

    CAS  PubMed  Google Scholar 

  37. Ikezumi, Y. et al. Identification of alternatively activated macrophages in new-onset paediatric and adult immunoglobulin A nephropathy: potential role in mesangial matrix expansion. Histopathology 58, 198–210 (2011).

    PubMed  Google Scholar 

  38. Ikezumi, Y. et al. Contrasting effects of steroids and mizoribine on macrophage activation and glomerular lesions in rat thy-1 mesangial proliferative glomerulonephritis. Am. J. Nephrol. 31, 273–282 (2010).

    CAS  PubMed  Google Scholar 

  39. Henderson, N. C. et al. Galectin 3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 172, 288–298 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wynes, M. W., Frankel, S. K. & Riches, D. W. IL-4-induced macrophage-derived IGF-I protects myofibroblasts from apoptosis following growth factor withdrawal. J. Leukoc. Biol. 76, 1019–1027 (2004).

    CAS  PubMed  Google Scholar 

  41. Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol. 19, 12–23 (2008).

    CAS  PubMed  Google Scholar 

  42. Huen, S. C., Moeckel, G. W. & Cantley, L. G. Macrophage-specific deletion of transforming growth factor-β1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury. Am. J. Physiol. Renal Physiol. 305, F477–F484 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan, T. K. et al. Matrix metalloproteinase 9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Lab. Invest. 93, 434–449 (2013).

    CAS  PubMed  Google Scholar 

  44. Tan, T. K. et al. Macrophage matrix metalloproteinase 9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am. J. Pathol. 176, 1256–1270 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fine, L. G. & Norman, J. T. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int. 74, 867–872 (2008).

    CAS  PubMed  Google Scholar 

  46. Gratchev, A. et al. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein βIG-H3. Scand. J. Immunol. 53, 386–392 (2001).

    CAS  PubMed  Google Scholar 

  47. Schnoor, M. et al. Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity. J. Immunol. 180, 5707–5719 (2008).

    CAS  PubMed  Google Scholar 

  48. Bertrand, S., Godoy, M., Semal, P. & Van Gansen, P. Transdifferentiation of macrophages into fibroblasts as a result of Schistosoma mansoni infection. Int. J. Dev. Biol. 36, 179–184 (1992).

    CAS  PubMed  Google Scholar 

  49. Mooney, J. E. et al. Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response. Am. J. Pathol. 176, 369–380 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pilling, D. & Gomer, R. H. Differentiation of circulating monocytes into fibroblast-like cells. Methods Mol. Biol. 904, 191–206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Alikhan, M. A. et al. Colony-stimulating factor 1 promotes kidney growth and repair via alteration of macrophage responses. Am. J. Pathol. 179, 1243–1256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, M. Z. et al. CSF 1 signaling mediates recovery from acute kidney injury. J. Clin. Invest. 122, 4519–4532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cochrane, A. L. et al. Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. J. Am. Soc. Nephrol. 16, 3623–3630 (2005).

    CAS  PubMed  Google Scholar 

  54. Vinuesa, E. et al. Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J. Pathol. 214, 104–113 (2008).

    CAS  PubMed  Google Scholar 

  55. Lech, M. et al. Macrophage phenotype controls long-term AKI outcomes—kidney regeneration versus atrophy. J. Am. Soc. Nephrol. 25, 292–304 (2014).

    CAS  PubMed  Google Scholar 

  56. Cao, Q. et al. IL 10/TGF-β-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J. Am. Soc. Nephrol. 21, 933–942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu, J. et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 84, 745–755 (2013).

    CAS  PubMed  Google Scholar 

  58. Riquelme, P., Geissler, E. K. & Hutchinson, J. A. Alternative approaches to myeloid suppressor cell therapy in transplantation: comparing regulatory macrophages to tolerogenic DCs and MDSCs. Transplant Res. 1, 17 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Nelson, P. J. et al. The renal mononuclear phagocytic system. J. Am. Soc. Nephrol. 23, 194–203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Heymann, F. et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J. Clin. Invest. 119, 1286–1297 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hochheiser, K. et al. Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. J. Clin. Invest. 123, 4242–4254 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma, F. Y., Woodman, N., Mulley, W. R., Kanellis, J. & Nikolic-Paterson, D. J. Macrophages contribute to cellular but not humoral mechanisms of acute rejection in rat renal allografts. Transplantation 96, 949–957 (2013).

    CAS  PubMed  Google Scholar 

  63. Zuidwijk, K. et al. Increased influx of myeloid dendritic cells during acute rejection is associated with interstitial fibrosis and tubular atrophy and predicts poor outcome. Kidney Int. 81, 64–75 (2012).

    CAS  PubMed  Google Scholar 

  64. Snelgrove, S. L. et al. Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis. Am. J. Pathol. 180, 91–103 (2012).

    CAS  PubMed  Google Scholar 

  65. Machida, Y. et al. Renal fibrosis in murine obstructive nephropathy is attenuated by depletion of monocyte lineage, not dendritic cells. J. Pharmacol. Sci. 114, 464–473 (2010).

    CAS  PubMed  Google Scholar 

  66. Robertson, H., Ali, S., McDonnell, B. J., Burt, A. D. & Kirby, J. A. Chronic renal allograft dysfunction: the role of T cell-mediated tubular epithelial to mesenchymal cell transition. J. Am. Soc. Nephrol. 15, 390–397 (2004).

    PubMed  Google Scholar 

  67. Harris, R. C. & Neilson, E. G. Toward a unified theory of renal progression. Annu. Rev. Med. 57, 365–380 (2006).

    CAS  PubMed  Google Scholar 

  68. Chung, A. C. & Lan, H. Y. Chemokines in renal injury. J. Am. Soc. Nephrol. 22, 802–809 (2011).

    CAS  PubMed  Google Scholar 

  69. Tipping, P. G. & Holdsworth, S. R. T cells in crescentic glomerulonephritis. J. Am. Soc. Nephrol. 17, 1253–1263 (2006).

    PubMed  Google Scholar 

  70. Reynolds, J. et al. CD28 B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J. Clin. Invest. 105, 643–651 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nikolic-Paterson, D. J. CD4+ T cells: a potential player in renal fibrosis. Kidney Int. 78, 333–335 (2010).

    PubMed  Google Scholar 

  72. Niedermeier, M. et al. CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc. Natl. Acad. Sci. USA 106, 17892–17897 (2009).

    CAS  PubMed  Google Scholar 

  73. Tapmeier, T. T. et al. Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int. 78, 351–362 (2010).

    CAS  PubMed  Google Scholar 

  74. Liu, L. et al. CD4+ T Lymphocytes, especially TH2 cells, contribute to the progress of renal fibrosis. Am. J. Nephrol. 36, 386–396 (2012).

    CAS  PubMed  Google Scholar 

  75. Holdsworth, S. R. & Summers, S. A. Role of mast cells in progressive renal diseases. J. Am. Soc. Nephrol. 19, 2254–2261 (2008).

    CAS  PubMed  Google Scholar 

  76. Kondo, S. et al. Role of mast cell tryptase in renal interstitial fibrosis. J. Am. Soc. Nephrol. 12, 1668–1676 (2001).

    CAS  PubMed  Google Scholar 

  77. Mack, M. & Rosenkranz, A. R. Basophils and mast cells in renal injury. Kidney Int. 76, 1142–1147 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. Summers, S. A. et al. Mast cell activation and degranulation promotes renal fibrosis in experimental unilateral ureteric obstruction. Kidney Int. 82, 676–685 (2012).

    CAS  PubMed  Google Scholar 

  79. Veerappan, A. et al. Mast cells are required for the development of renal fibrosis in the rodent unilateral ureteral obstruction model. Am. J. Physiol. Renal Physiol. 302, F192–F204 (2012).

    CAS  PubMed  Google Scholar 

  80. Miyazawa, S., Hotta, O., Doi, N., Natori, Y. & Nishikawa, K. Role of mast cells in the development of renal fibrosis: use of mast cell-deficient rats. Kidney Int. 65, 2228–2237 (2004).

    PubMed  Google Scholar 

  81. Kim, D. H. et al. Mast cells decrease renal fibrosis in unilateral ureteral obstruction. Kidney Int. 75, 1031–1038 (2009).

    CAS  PubMed  Google Scholar 

  82. Schlondorff, D. & Banas, B. The mesangial cell revisited: no cell is an island. J. Am. Soc. Nephrol. 20, 1179–1187 (2009).

    CAS  PubMed  Google Scholar 

  83. Gomez-Guerrero, C., Hernandez-Vargas, P., Lopez-Franco, O., Ortiz-Munoz, G. & Egido, J. Mesangial cells and glomerular inflammation: from the pathogenesis to novel therapeutic approaches. Curr. Drug Targets Inflamm. Allergy 4, 341–351 (2005).

    CAS  PubMed  Google Scholar 

  84. Lai, K. N. et al. Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol. Dial. Transplant. 24, 62–72 (2009).

    CAS  PubMed  Google Scholar 

  85. Lai, K. N. et al. Activation of podocytes by mesangial-derived TNF-α: glomerulo-podocytic communication in IgA nephropathy. Am. J. Physiol. Renal Physiol. 294, F945–F955 (2008).

    CAS  PubMed  Google Scholar 

  86. Ikezumi, Y., Hurst, L. A., Masaki, T., Atkins, R. C. & Nikolic-Paterson, D. J. Adoptive transfer studies demonstrate that macrophages can induce proteinuria and mesangial cell proliferation. Kidney Int. 63, 83–95 (2003).

    CAS  PubMed  Google Scholar 

  87. Ikezumi, Y. et al. Activated macrophages down-regulate podocyte nephrin and podocin expression via stress-activated protein kinases. Biochem. Biophys. Res. Commun. 376, 706–711 (2008).

    CAS  PubMed  Google Scholar 

  88. Neale, T. J. et al. Tumor necrosis factor-alpha is expressed by glomerular visceral epithelial cells in human membranous nephropathy. Am. J. Pathol. 146, 1444–1454 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Prodjosudjadi, W., Gerritsma, J. S., van Es, L. A., Daha, M. R. & Bruijn, J. A. Monocyte chemoattractant protein 1 in normal and diseased human kidneys: an immunohistochemical analysis. Clin. Nephrol. 44, 148–155 (1995).

    CAS  PubMed  Google Scholar 

  90. Brahler, S. et al. Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria. Am. J. Physiol. Renal Physiol. 303, F1473–F1485 (2012).

    PubMed  Google Scholar 

  91. Dai, Y. et al. Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis. Kidney Int. 84, 950–961 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Moeller, M. J. et al. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J. Am. Soc. Nephrol. 15, 61–67 (2004).

    PubMed  Google Scholar 

  93. Hancock, W. W. & Atkins, R. C. Cellular composition of crescents in human rapidly progressive glomerulonephritis identified using monoclonal antibodies. Am. J. Nephrol. 4, 177–181 (1984).

    CAS  PubMed  Google Scholar 

  94. Muller, G. A., Muller, C. A., Markovic-Lipkovski, J., Kilper, R. B. & Risler, T. Renal, major histocompatibility complex antigens and cellular components in rapidly progressive glomerulonephritis identified by monoclonal antibodies. Nephron 49, 132–139 (1988).

    CAS  PubMed  Google Scholar 

  95. Smeets, B. et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1262–1274 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ng, Y. Y. et al. Glomerular epithelial-myofibroblast transdifferentiation in the evolution of glomerular crescent formation. Nephrol. Dial. Transplant. 14, 2860–2872 (1999).

    CAS  PubMed  Google Scholar 

  97. Guerrot, D. et al. Progression of renal fibrosis: the underestimated role of endothelial alterations. Fibrogenesis Tissue Repair 5 (Suppl. 1), S15 (2012).

    PubMed  PubMed Central  Google Scholar 

  98. Vielhauer, V., Kulkarni, O., Reichel, C. A. & Anders, H. J. Targeting the recruitment of monocytes and macrophages in renal disease. Semin. Nephrol. 30, 318–333 (2010).

    CAS  PubMed  Google Scholar 

  99. Devi, S. et al. Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat. Med. 19, 107–112 (2013).

    CAS  PubMed  Google Scholar 

  100. Rabelink, T. J., de Boer, H. C. & van Zonneveld, A. J. Endothelial activation and circulating markers of endothelial activation in kidney disease. Nat. Rev. Nephrol. 6, 404–414 (2010).

    CAS  PubMed  Google Scholar 

  101. Nakagawa, T. et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol. 18, 539–550 (2007).

    CAS  PubMed  Google Scholar 

  102. Zhao, H. J. et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J. Am. Soc. Nephrol. 17, 2664–2669 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun, Y. B., Qu, X., Li, X., Nikolic-Paterson, D. J. & Li, J. Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast Smad3 linker phosphorylation in the mouse obstructed kidney. PLoS One 8, e84063 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, J., Qu, X. & Bertram, J. F. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am. J. Pathol. 175, 1380–1388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, J. et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59, 2612–2624 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 19, 2282–2287 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tesch, G. H. et al. Monocyte chemoattractant protein 1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. J. Clin. Invest. 103, 73–80 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Okada, H. et al. Osteopontin expressed by renal tubular epithelium mediates interstitial monocyte infiltration in rats. Am. J. Physiol. Renal Physiol. 278, F110–F121 (2000).

    CAS  PubMed  Google Scholar 

  112. Gomez-Garre, D. et al. Activation of NF κB in tubular epithelial cells of rats with intense proteinuria: role of angiotensin II and endothelin 1. Hypertension 37, 1171–1180 (2001).

    CAS  PubMed  Google Scholar 

  113. Mezzano, S. et al. NF κB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol. Dial. Transplant. 19, 2505–2512 (2004).

    CAS  PubMed  Google Scholar 

  114. Stambe, C., Atkins, R. C., Hill, P. A. & Nikolic-Paterson, D. J. Activation and cellular localization of the p38 and JNK MAPK pathways in rat crescentic glomerulonephritis. Kidney Int. 64, 2121–2132 (2003).

    CAS  PubMed  Google Scholar 

  115. Stambe, C., Nikolic-Paterson, D. J., Hill, P. A., Dowling, J. & Atkins, R. C. p38 Mitogen-activated protein kinase activation and cell localization in human glomerulonephritis: correlation with renal injury. J. Am. Soc. Nephrol. 15, 326–336 (2004).

    CAS  PubMed  Google Scholar 

  116. Tomita, N. et al. In vivo administration of a nuclear transcription factor-kappaB decoy suppresses experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol. 11, 1244–1252 (2000).

    CAS  PubMed  Google Scholar 

  117. Sheryanna, A. et al. Inhibition of p38 mitogen-activated protein kinase is effective in the treatment of experimental crescentic glomerulonephritis and suppresses monocyte chemoattractant protein 1 but not IL-1beta or IL-6. J. Am. Soc. Nephrol. 18, 1167–1179 (2007).

    CAS  PubMed  Google Scholar 

  118. Hill, P. A., Lan, H. Y., Nikolic-Paterson, D. J. & Atkins, R. C. ICAM 1 directs migration and localization of interstitial leukocytes in experimental glomerulonephritis. Kidney Int. 45, 32–42 (1994).

    CAS  PubMed  Google Scholar 

  119. Nikolic-Paterson, D. J., Lan, H. Y., Hill, P. A., Vannice, J. L. & Atkins, R. C. Suppression of experimental glomerulonephritis by the interleukin 1 receptor antagonist: inhibition of intercellular adhesion molecule 1 expression. J. Am. Soc. Nephrol. 4, 1695–1700 (1994).

    CAS  PubMed  Google Scholar 

  120. Bruzzi, I., Benigni, A. & Remuzzi, G. Role of increased glomerular protein traffic in the progression of renal failure. Kidney Int. 62 (Suppl.), 29–31 (1997).

    Google Scholar 

  121. Wang, Y., Rangan, G. K., Tay, Y. C. & Harris, D. C. Induction of monocyte chemoattractant protein 1 by albumin is mediated by nuclear factor κB in proximal tubule cells. J. Am. Soc. Nephrol. 10, 1204–1213 (1999).

    CAS  PubMed  Google Scholar 

  122. Eddy, A. A. Interstitial nephritis induced by protein-overload proteinuria. Am. J. Pathol. 135, 719–733 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Erkan, E. Proteinuria and progression of glomerular diseases. Pediatr. Nephrol. 28, 1049–1058 (2013).

    PubMed  Google Scholar 

  124. Kikuchi, H. et al. Severe proteinuria, sustained for 6 months, induces tubular epithelial cell injury and cell infiltration in rats but not progressive interstitial fibrosis. Nephrol. Dial. Transplant. 15, 799–810 (2000).

    CAS  PubMed  Google Scholar 

  125. Osicka, T. M. et al. Renal processing of serum proteins in an albumin-deficient environment: an in vivo study of glomerulonephritis in the Nagase analbuminaemic rat. Nephrol. Dial. Transplant. 19, 320–328 (2004).

    CAS  PubMed  Google Scholar 

  126. Camussi, G., Rotunno, M., Segoloni, G., Brentjens, J. R. & Andres, G. A. In vitro alternative pathway activation of complement by the brush border of proximal tubules of normal rat kidney. J. Immunol. 128, 1659–1663 (1982).

    CAS  PubMed  Google Scholar 

  127. Alexopoulos, E., Papaghianni, A. & Papadimitriou, M. The pathogenetic significance of C5b-9 in IgA nephropathy. Nephrol. Dial. Transplant. 10, 1166–1172 (1995).

    CAS  PubMed  Google Scholar 

  128. Mosolits, S., Magyarlaki, T. & Nagy, J. Membrane attack complex and membrane cofactor protein are related to tubulointerstitial inflammation in various human glomerulopathies. Nephron 75, 179–187 (1997).

    CAS  PubMed  Google Scholar 

  129. David, S. et al. Alternative pathway complement activation induces proinflammatory activity in human proximal tubular epithelial cells. Nephrol. Dial. Transplant. 12, 51–56 (1997).

    CAS  PubMed  Google Scholar 

  130. Abe, K., Li, K., Sacks, S. H. & Sheerin, N. S. The membrane attack complex, C5b-9, up regulates collagen gene expression in renal tubular epithelial cells. Clin. Exp. Immunol. 136, 60–66 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gerritsma, J. S., Gerritsen, A. F., Van Kooten, C., Van Es, L. A. & Daha, M. R. Interleukin-1-α enhances the biosynthesis of complement C3 and factor B by human kidney proximal tubular epithelial cells in vitro. Mol. Immunol. 33, 847–854 (1996).

    CAS  PubMed  Google Scholar 

  132. Kriz, W., Hosser, H., Hahnel, B., Gretz, N. & Provoost, A. P. From segmental glomerulosclerosis to total nephron degeneration and interstitial fibrosis: a histopathological study in rat models and human glomerulopathies. Nephrol. Dial. Transplant. 13, 2781–2798 (1998).

    CAS  PubMed  Google Scholar 

  133. Ohse, T. et al. A new function for parietal epithelial cells: a second glomerular barrier. Am. J. Physiol. Renal Physiol. 297, F1566–F1574 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Stambe, C. et al. The role of p38α mitogen-activated protein kinase activation in renal fibrosis. J. Am. Soc. Nephrol. 15, 370–379 (2004).

    CAS  PubMed  Google Scholar 

  135. Loverre, A. et al. Ischemia-reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: differential modulation by rapamycin. J. Am. Soc. Nephrol. 15, 2675–2686 (2004).

    CAS  PubMed  Google Scholar 

  136. Kim, H. J. et al. NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury. J. Pharmacol. Exp. Ther. 346, 465–472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Cao, C. C. et al. In vivo transfection of NF-κB decoy oligodeoxynucleotides attenuate renal ischemia/reperfusion injury in rats. Kidney Int. 65, 834–845 (2004).

    CAS  PubMed  Google Scholar 

  138. Vilaysane, A. et al. The NLRP3 inflammasome promotes renal inflammation and contributes to, CKD. J. Am. Soc. Nephrol. 21, 1732–1744 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Johnson, D. W., Saunders, H. J., Baxter, R. C., Field, M. J. & Pollock, C. A. Paracrine stimulation of human renal fibroblasts by proximal tubule cells. Kidney Int. 54, 747–757 (1998).

    CAS  PubMed  Google Scholar 

  140. Higgins, D. F. et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 117, 3810–3820 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kimura, K. et al. Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis. Am. J. Physiol. Renal Physiol. 295, F1023–F1029 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Fujiu, K., Manabe, I. & Nagai, R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J. Clin. Invest. 121, 3425–3441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Meng, X. M. et al. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. J. Pathol. 227, 175–188 (2012).

    CAS  PubMed  Google Scholar 

  144. Gewin, L. et al. TGF-β receptor deletion in the renal collecting system exacerbates fibrosis. J. Am. Soc. Nephrol. 21, 1334–1343 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Meng, X. M., Chung, A. C. & Lan, H. Y. Role of the TGF-β/BMP 7/Smad pathways in renal diseases. Clin. Sci. (Lond.) 124, 243–254 (2013).

    CAS  Google Scholar 

  146. Meng, X. M. et al. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int. 81, 266–279 (2012).

    CAS  PubMed  Google Scholar 

  147. Meng, X. M. et al. Smad2 protects against TGF-β/Smad3-mediated renal fibrosis. J. Am. Soc. Nephrol. 21, 1477–1487 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang, J., Dai, C. & Liu, Y. Hepatocyte growth factor gene therapy and angiotensin II blockade synergistically attenuate renal interstitial fibrosis in mice. J. Am. Soc. Nephrol. 13, 2464–2477 (2002).

    CAS  PubMed  Google Scholar 

  149. Fan, J. M. et al. Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-β1-dependent mechanism in vitro. Am. J. Kidney Dis. 37, 820–831 (2001).

    CAS  PubMed  Google Scholar 

  150. Liu, Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol. 15, 1–12 (2004).

    CAS  PubMed  Google Scholar 

  151. Liu, Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol. 21, 212–222 (2010).

    CAS  PubMed  Google Scholar 

  152. Fan, J. M. et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int. 56, 1455–1467 (1999).

    CAS  PubMed  Google Scholar 

  153. Jinde, K. et al. Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. Am. J. Kidney Dis. 38, 761–769 (2001).

    CAS  PubMed  Google Scholar 

  154. Chevalier, R. L., Forbes, M. S. & Thornhill, B. A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 75, 1145–1152 (2009).

    PubMed  Google Scholar 

  155. Eddy, A. A., Lopez-Guisa, J. M., Okamura, D. M. & Yamaguchi, I. Investigating mechanisms of chronic kidney disease in mouse models. Pediatr. Nephrol. 27, 1233–1247 (2012).

    PubMed  Google Scholar 

  156. Ma, L. J. & Fogo, A. B. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int. 64, 350–355 (2003).

    PubMed  Google Scholar 

  157. Tam, F. W. et al. Development of scarring and renal failure in a rat model of crescentic glomerulonephritis. Nephrol. Dial. Transplant. 14, 1658–1566 (1999).

    CAS  PubMed  Google Scholar 

  158. Lee, V. W. & Harris, D. C. Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology (Carlton) 16, 30–38 (2011).

    Google Scholar 

Download references

Acknowledgements

We apologize to all colleagues whose important findings could not be cited owing to space limitations. This work was supported by the Major State Basic Research Program of China, 973 programme (2012CB517700), the Research Grant Council of Hong Kong grants (RGC GRF 469110, N_CUHK40410, 468711, CUHK5/CRF/09 and CUHK3/CRF/12R), the Focused Investment Scheme A and B from the Chinese University of Hong Kong and the National Natural Science Foundation of China (No. 81300580).

Author information

Authors and Affiliations

Authors

Contributions

X.-M.M. researched data for the article. All authors discussed the article's content, after which X.-M.M. wrote the manuscript; D.J.N.-P. and H.Y.L. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hui Yao Lan.

Ethics declarations

Competing interests

David J. Nikolic-Paterson has previously worked as a consultant and received research funding from Celgene, and has previously worked as a consultant for Johnson & Johnson Pharmaceuticals. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, XM., Nikolic-Paterson, D. & Lan, H. Inflammatory processes in renal fibrosis. Nat Rev Nephrol 10, 493–503 (2014). https://doi.org/10.1038/nrneph.2014.114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing