Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Unveiling the pathogen behind the vacuole

Abstract

Many clinically relevant pathogens, including certain bacteria and protozoan parasites, have developed an intracellular lifestyle that enables them to nestle in customized vacuoles. Although these pathogens are protected from extracellular defences, recent findings indicate that host cells have evolved multiple strategies to unmask the pathogen disguised by the vacuole and thereby initiate innate immune responses. In this Opinion article, we propose and discuss models by which hosts can sense 'professional' vacuolar pathogens, and we highlight the ability of the host to target these stealthy bacteria and parasites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct and indirect sensing of vacuolar-pathogen ligands.
Figure 2: Sensing the presence of a pathogen-containing vacuole.

Similar content being viewed by others

References

  1. Casadevall, A. Evolution of intracellular pathogens. Annu. Rev. Microbiol. 62, 19–33 (2008).

    CAS  PubMed  Google Scholar 

  2. Kumar, Y. & Valdivia, R. H. Leading a sheltered life: intracellular pathogens and maintenance of vacuolar compartments. Cell Host Microbe 5, 593–601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cemma, M. & Brumell, J. H. Interactions of pathogenic bacteria with autophagy systems. Curr. Biol. 22, R540–R545 (2012).

    CAS  PubMed  Google Scholar 

  4. Broz, P., Ohlson, M. B. & Monack, D. M. Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 3, 62–70 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. von Moltke, J., Ayres, J. S., Kofoed, E. M., Chavarria-Smith, J. & Vance, R. E. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31, 73–106 (2013).

    CAS  PubMed  Google Scholar 

  6. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in Salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    CAS  PubMed  Google Scholar 

  7. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7, 569–575 (2006).

    CAS  PubMed  Google Scholar 

  8. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    CAS  PubMed  Google Scholar 

  9. Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592–595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Raupach, B., Peuschel, S. K., Monack, D. M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 74, 4922–4926 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lara-Tejero, M. et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203, 1407–1412 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Novikov, A. et al. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1β production in human macrophages. J. Immunol. 187, 2540–2547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stanley, S. A., Johndrow, J. E., Manzanillo, P. & Cox, J. S. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol. 178, 3143–3152 (2007).

    CAS  PubMed  Google Scholar 

  15. Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693–704 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Manzanillo, P. S., Shiloh, M. U., Portnoy, D. A. & Cox, J. S. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11, 469–480 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pandey, A. K. et al. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog. 5, e1000500 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ellis, T. N. & Kuehn, M. J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74, 81–94 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Manzanillo, P. S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512–516 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura, N. et al. Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509, 240–244 (2014).

    CAS  PubMed  Google Scholar 

  23. Philpott, D. J., Sorbara, M. T., Robertson, S. J., Croitoru, K. & Girardin, S. E. NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14, 9–23 (2014).

    CAS  PubMed  Google Scholar 

  24. Meunier, E. et al. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509, 366–370 (2014).

    CAS  PubMed  Google Scholar 

  25. Degrandi, D. et al. Extensive characterization of IFN-induced GTPases mGBP1 to mGBP10 involved in host defense. J. Immunol. 179, 7729–7740 (2007).

    CAS  PubMed  Google Scholar 

  26. Haldar, A. K. et al. IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of “self” IRGM proteins. PLoS Pathog. 9, e1003414 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, B. H. et al. A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection. Science 332, 717–721 (2011).

    CAS  PubMed  Google Scholar 

  28. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    CAS  PubMed  Google Scholar 

  29. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    CAS  PubMed  Google Scholar 

  30. MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 12, 367–382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Meunier, E. et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 16, 476–484 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Prudencio, M., Rodriguez, A. & Mota, M. M. The silent path to thousands of merozoites: the Plasmodium liver stage. Nat. Rev. Microbiol. 4, 849–856 (2006).

    CAS  PubMed  Google Scholar 

  33. Sibley, L. D. Invasion and intracellular survival by protozoan parasites. Immunol. Rev. 240, 72–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007).

    CAS  PubMed  Google Scholar 

  35. Melo, M. B. et al. Transcriptional analysis of murine macrophages infected with different Toxoplasma strains identifies novel regulation of host signaling pathways. PLoS Pathog. 9, e1003779 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Beiting, D. P. et al. Differential induction of TLR3-dependent innate immune signaling by closely related parasite species. PLoS ONE 9, e88398 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Sibley, L. D. & Ajioka, J. W. Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps. Annu. Rev. Microbiol. 62, 329–351 (2008).

    CAS  PubMed  Google Scholar 

  38. Howe, D. K. & Sibley, L. D. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J. Infect. Dis. 172, 1561–1566 (1995).

    CAS  PubMed  Google Scholar 

  39. Sibley, L. D. & Boothroyd, J. C. Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature 359, 82–85 (1992).

    CAS  PubMed  Google Scholar 

  40. Howard, J. C., Hunn, J. P. & Steinfeldt, T. The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii. Curr. Opin. Microbiol. 14, 414–421 (2011).

    CAS  PubMed  Google Scholar 

  41. Martens, S. et al. Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathog. 1, e24 (2005).

    PubMed  PubMed Central  Google Scholar 

  42. Yamamoto, M. et al. A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity 37, 302–313 (2012).

    CAS  PubMed  Google Scholar 

  43. Zhao, Y. O., Khaminets, A., Hunn, J. P. & Howard, J. C. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNγ-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog. 5, e1000288 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Butcher, B. A. et al. p47 GTPases regulate Toxoplasma gondii survival in activated macrophages. Infect. Immun. 73, 3278–3286 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Taylor, G. A. et al. Pathogen-specific loss of host resistance in mice lacking the IFN-γ-inducible gene IGTP. Proc. Natl Acad. Sci. USA 97, 751–755 (2000).

    CAS  PubMed  Google Scholar 

  46. Collazo, C. M. et al. Inactivation of LRG-47 and IRG-47 reveals a family of interferon γ-inducible genes with essential, pathogen-specific roles in resistance to infection. J. Exp. Med. 194, 181–188 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liesenfeld, O. et al. The IFN-γ-inducible GTPase, Irga6, protects mice against Toxoplasma gondii but not against Plasmodium berghei and some other intracellular pathogens. PLoS ONE 6, e20568 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liehl, P. et al. Innate immunity induced by Plasmodium liver infection inhibits malaria reinfections. Infect. Immun. 83, 1172–1180 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Liehl, P. et al. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat. Med. 20, 47–53 (2014).

    CAS  PubMed  Google Scholar 

  50. Couper, K. N. et al. Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation through potent macrophage stimulation. PLoS Pathog. 6, e1000744 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Mantel, P. Y. et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13, 521–534 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dreux, M. et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12, 558–570 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Stuart, L. M., Paquette, N. & Boyer, L. Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat. Rev. Immunol. 13, 199–206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    CAS  PubMed  Google Scholar 

  55. Bruno, V. M. et al. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog. 5, e1000538 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Keestra, A. M. et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496, 233–237 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    CAS  PubMed  Google Scholar 

  58. Melo, M. B., Jensen, K. D. & Saeij, J. P. Toxoplasma gondii effectors are master regulators of the inflammatory response. Trends Parasitol. 27, 487–495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hunter, C. A. & Sibley, L. D. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat. Rev. Microbiol. 10, 766–778 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosowski, E. E. et al. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J. Exp. Med. 208, 195–212 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Braun, L. et al. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. J. Exp. Med. 210, 2071–2086 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sher, A. et al. Induction and regulation of IL-12-dependent host resistance to Toxoplasma gondii. Immunol. Res. 27, 521–528 (2003).

    CAS  PubMed  Google Scholar 

  63. Mashayekhi, M. et al. CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35, 249–259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cirelli, K. M. et al. Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii. PLoS Pathog. 10, e1003927 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Ewald, S. E., Chavarria-Smith, J. & Boothroyd, J. C. NLRP1 is an inflammasome sensor for Toxoplasma gondii. Infect. Immun. 82, 460–468 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Gorfu, G. et al. Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii. mBio 5, e01117-13 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Vance, R. E., Isberg, R. R. & Portnoy, D. A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10–21 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dupont, N. et al. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6, 137–149 (2009).

    CAS  PubMed  Google Scholar 

  70. Paz, I. et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell. Microbiol. 12, 530–544 (2010).

    CAS  PubMed  Google Scholar 

  71. Vasta, G. R. Galectins as pattern recognition receptors: structure, function, and evolution. Adv. Exp. Med. Biol. 946, 21–36 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Coers, J. Self and non-self discrimination of intracellular membranes by the innate immune system. PLoS Pathog. 9, e1003538 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hunn, J. P. et al. Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii. EMBO J. 27, 2495–2509 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Al-Zeer, M. A., Al-Younes, H. M., Braun, P. R., Zerrahn, J. & Meyer, T. F. IFN-γ-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy. PLoS ONE 4, e4588 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. Bekpen, C. et al. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol. 6, R92 (2005).

    PubMed  PubMed Central  Google Scholar 

  76. Henry, T., Brotcke, A., Weiss, D. S., Thompson, L. J. & Monack, D. M. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med. 204, 987–994 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    CAS  PubMed  Google Scholar 

  78. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    CAS  PubMed  Google Scholar 

  79. Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Broz, P. & Monack, D. M. Newly described pattern recognition receptors team up against intracellular pathogens. Nat. Rev. Immunol. 13, 551–565 (2013).

    CAS  PubMed  Google Scholar 

  81. Hiscott, J., Nguyen, T. L., Arguello, M., Nakhaei, P. & Paz, S. Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene 25, 6844–6867 (2006).

    CAS  PubMed  Google Scholar 

  82. Honda, K. & Taniguchi, T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 6, 644–658 (2006).

    CAS  PubMed  Google Scholar 

  83. Beutler, B. Innate immunity: an overview. Mol. Immunol. 40, 845–859 (2004).

    CAS  PubMed  Google Scholar 

  84. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Carruthers, V. B. & Tomley, F. M. Microneme proteins in apicomplexans. Subcell. Biochem. 47, 33–45 (2008).

    PubMed  PubMed Central  Google Scholar 

  86. Spielmann, T., Montagna, G. N., Hecht, L. & Matuschewski, K. Molecular make-up of the Plasmodium parasitophorous vacuolar membrane. Int. J. Med. Microbiol. 302, 179–186 (2012).

    CAS  PubMed  Google Scholar 

  87. McGhie, E. J., Brawn, L. C., Hume, P. J., Humphreys, D. & Koronakis, V. Salmonella takes control: effector-driven manipulation of the host. Curr. Opin. Microbiol. 12, 117–124 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ueno, N. & Wilson, M. E. Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival. Trends Parasitol. 28, 335–344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Koul, A., Herget, T., Klebl, B. & Ullrich, A. Interplay between mycobacteria and host signalling pathways. Nat. Rev. Microbiol. 2, 189–202 (2004).

    CAS  PubMed  Google Scholar 

  90. Alix, E., Mukherjee, S. & Roy, C. R. Subversion of membrane transport pathways by vacuolar pathogens. J. Cell Biol. 195, 943–952 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Desai, S. A. & Rosenberg, R. L. Pore size of the malaria parasite's nutrient channel. Proc. Natl Acad. Sci. USA 94, 2045–2049 (1997).

    CAS  PubMed  Google Scholar 

  92. Soldati, T. & Schliwa, M. Powering membrane traffic in endocytosis and recycling. Nat. Rev. Mol. Cell Biol. 7, 897–908 (2006).

    CAS  PubMed  Google Scholar 

  93. Haraga, A., Ohlson, M. B. & Miller, S. I. Salmonellae interplay with host cells. Nat. Rev. Microbiol. 6, 53–66 (2008).

    CAS  PubMed  Google Scholar 

  94. Ehrt, S. & Schnappinger, D. Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell. Microbiol. 11, 1170–1178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Plattner, F. & Soldati-Favre, D. Hijacking of host cellular functions by the Apicomplexa. Annu. Rev. Microbiol. 62, 471–487 (2008).

    CAS  PubMed  Google Scholar 

  96. Hanson, K. K. et al. Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proc. Natl Acad. Sci. USA 110, E2838–E2847 (2013).

    CAS  PubMed  Google Scholar 

  97. Itoe, M. A. et al. Host cell phosphatidylcholine is a key mediator of malaria parasite survival during liver stage infection. Cell Host Microbe 16, 778–786 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kaye, P. & Scott, P. Leishmaniasis: complexity at the host–pathogen interface. Nat. Rev. Microbiol. 9, 604–615 (2011).

    CAS  PubMed  Google Scholar 

  99. Scheffter, S. M., Ro, Y. T., Chung, I. K. & Patterson, J. L. The complete sequence of Leishmania RNA virus LRV2-1, a virus of an Old World parasite strain. Virology 212, 84–90 (1995).

    CAS  PubMed  Google Scholar 

  100. Ives, A. et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331, 775–778 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Zaidman-Rémy, T. Henry and B. Py for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Liehl or Maria M. Mota.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liehl, P., Zuzarte-Luis, V. & Mota, M. Unveiling the pathogen behind the vacuole. Nat Rev Microbiol 13, 589–598 (2015). https://doi.org/10.1038/nrmicro3504

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3504

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology