Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

The integrin adhesome: from genes and proteins to human disease

Key Points

  • The integrin adhesome consists of molecules that are associated with the structure and signalling activity of integrin-mediated adhesions. The analysis of adhesome components shows that their mutation or dysregulation is often associated with human disease.

  • Searching databases for monogenic diseases that display Mendelian inheritance revealed over 50 genes, which primarily encode adhesome signalling proteins, that are involved in human diseases (predominately cancer).

  • An additional set of 138 adhesome genes was shown to be genetically associated with disease. These diseases are caused by dysregulation of multiple genes, some of which, such as adhesion receptors, are related to the integrin adhesome.

  • The current approaches that are used for associating particular genes with specific diseases include in silico analysis, cell culture studies and animal experiments.

  • The development of mammalian disease models by genetic manipulation has demonstrated the relevance of specific groups of genes in human diseases, including haematological and blistering disorders (among others).

  • The combined data derived from different mammalian disease models reveal that the integrin adhesome has a major role in regulating tissue homeostasis and cellular interactions, and that aberrant expression and gene mutations in its diverse constituents can lead to major pathological states.

Abstract

The adhesive interactions of cells with their environment through the integrin family of transmembrane receptors have key roles in regulating multiple aspects of cellular physiology, including cell proliferation, viability, differentiation and migration. Consequently, failure to establish functional cell adhesions, and thus the assembly of associated cytoplasmic scaffolding and signalling networks, can have severe pathological effects. The roles of specific constituents of integrin-mediated adhesions, which are collectively known as the 'integrin adhesome', in diverse pathological states are becoming clear. Indeed, the prominence of mutations in specific adhesome molecules in various human diseases is now appreciated, and experimental as well as in silico approaches provide insights into the molecular mechanisms underlying these pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative scheme of the adhesome and images of focal adhesions.
Figure 2: Percentage of genes belonging to the adhesome functional categories that lead to each disease type.
Figure 3: Adhesome-related skin blistering disorders: junctional epidermolysis bullosa and Kindler syndrome.
Figure 4: Focal segmental glomerulosclerosis.

Similar content being viewed by others

References

  1. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nature Rev. Mol. Cell Biol. 2, 793–805 (2001).

    Article  CAS  Google Scholar 

  2. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nature Cell Biol. 9, 858–867 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Zaidel-Bar, R. & Geiger, B. The switchable integrin adhesome. J. Cell Sci. 123, 1385–1388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geiger, B. & Yamada, K. M. Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol. 3, a0050 (2011).

    Article  CAS  Google Scholar 

  6. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  7. Schiller, H. B. et al. beta1- and alphav-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nature Cell Biol. 15, 625–636 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Zamir, E., Geiger, B. & Kam, Z. Quantitative multicolor compositional imaging resolves molecular domains in cell–matrix adhesions. PLoS ONE 3, e1901 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Byron, A., Humphries, J. D., Bass, M. D., Knight, D. & Humphries, M. J. Proteomic analysis of integrin adhesion complexes. Sci. Signal 4, pt2 (2011).

    PubMed  Google Scholar 

  10. Schiller, H. B., Friedel, C. C., Boulegue, C. & Fassler, R. Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep. 12, 259–266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuo, J. C. et al. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nature Cell Biol. 13, 383–393 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Geiger, T. & Zaidel-Bar, R. Opening the floodgates: proteomics and the integrin adhesome. Curr. Opin. Cell Biol. 24, 562–568 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Winograd-Katz, S. E., Itzkovitz, S., Kam, Z. & Geiger, B. Multiparametric analysis of focal adhesion formation by RNAi-mediated gene knockdown. J. Cell Biol. 186, 423–436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bollinger, M. et al. Tailoring of integrin ligands: probing the charge capability of the metal ion-dependent adhesion site. J. Med. Chem. 55, 871–882 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Simpson, K. J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature Cell Biol. 10, 1027–1038 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Brakebusch, C., Bouvard, D., Stanchi, F., Sakai, T. & Fassler, R. Integrins in invasive growth. J. Clin. Invest. 109, 999–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Ussar, S. et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 4, e1000289 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Becker, K. G., Barnes, K. C., Bright, T. J. & Wang, S. A. The genetic association database. Nature Genet. 36, 431–432 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Hauser, W. et al. Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc. Natl Acad. Sci. USA 96, 8120–8125 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gurniak, C. B., Perlas, E. & Witke, W. The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev. Biol. 278, 231–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Y. et al. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information. BMC Med. Genom. 3, 1 (2010).

    Article  CAS  Google Scholar 

  23. Nurden, A. T., Fiore, M., Nurden, P. & Pillois, X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 118, 5996–6005 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y. P. et al. Ser-752-->Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of platelet integrin αIIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc. Natl Acad. Sci. USA 89, 10169–10173 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, R., Shattil, S. J., Ambruso, D. R. & Newman, P. J. Truncation of the cytoplasmic domain of β3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin αIIbβ3 complex. J. Clin. Invest. 100, 2393–2403 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilcox, D. A., Wautier, J. L., Pidard, D. & Newman, P. J. A single amino acid substitution flanking the fourth calcium binding domain of αIIb prevents maturation of the αIIbβ3 integrin complex. J. Biol. Chem. 269, 4450–4457 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez-Manchon, C. et al. A novel homozygous splice junction mutation in GPIIb associated with alternative splicing, nonsense-mediated decay of GPIIb-mRNA, and type II Glanzmann's thrombasthenia. J. Thromb. Haemost. 1, 1071–1078 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Nelson, E. J. et al. Three novel β-propeller mutations causing Glanzmann thrombasthenia result in production of normally stable pro-αIIb, but variably impaired progression of pro- αIIbβ3 from endoplasmic reticulum to Golgi. J. Thromb. Haemost. 3, 2773–2783 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hodivala-Dilke, K. M. et al. β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reynolds, L. E. et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nature Med. 8, 27–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Reynolds, A. R. et al. Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in β3-integrin-deficient mice. Cancer Res. 64, 8643–8650 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Weng, S. et al. β3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed, hyperlipidemic mice. Proc. Natl Acad. Sci. USA 100, 6730–6735 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren, J. et al. β3 integrin deficiency promotes cardiac hypertrophy and inflammation. J. Mol. Cell Cardiol 42, 367–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Weis, S. M. et al. Cooperation between VEGF and β3 integrin during cardiac vascular development. Blood 109, 1962–1970 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McHugh, K. P. et al. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105, 433–440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng, X. et al. A Glanzmann's mutation in β3 integrin specifically impairs osteoclast function. J. Clin. Invest. 107, 1137–1144 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reynolds, L. E. et al. Accelerated re-epithelialization in β3-integrin-deficient- mice is associated with enhanced TGF- β1 signaling. Nature Med. 11, 167–174 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Carter, M. D. et al. Absence of preference for social novelty and increased grooming in integrin β3 knockout mice: initial studies and future directions. Autism Res. 4, 57–67 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Anderson, D. C. & Springer, T. A. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu. Rev. Med. 38, 175–194 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Kishimoto, T. K., Hollander, N., Roberts, T. M., Anderson, D. C. & Springer, T. A. Heterogeneous mutations in the β subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell 50, 193–202 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Kuijpers, T. W. et al. Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional β2 integrins. J. Clin. Invest. 100, 1725–1733 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wilson, R. W. et al. Gene targeting yields a CD18-mutant mouse for study of inflammation. J. Immunol. 151, 1571–1578 (1993).

    CAS  PubMed  Google Scholar 

  43. Bullard, D. C. et al. A polygenic mouse model of psoriasiform skin disease in CD18-deficient mice. Proc. Natl Acad. Sci. USA 93, 2116–2121 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scharffetter-Kochanek, K. et al. Spontaneous skin ulceration and defective T cell function in CD18 null mice. J. Exp. Med. 188, 119–131 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oreshkova, T. et al. β2 integrin deficiency yields unconventional double-negative T cells distinct from mature classical natural killer T cells in mice. Immunology 128, 271–286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grabbe, S. et al. β2 integrins are required for skin homing of primed T cells but not for priming naive T cells. J. Clin. Invest. 109, 183–192 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peters, T. et al. Terminal B cell differentiation is skewed by deregulated interleukin-6 secretion in β2 integrin-deficient mice. J. Leukoc. Biol. 80, 599–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Weinmann, P., Scharffetter-Kochanek, K., Forlow, S. B., Peters, T. & Walzog, B. A role for apoptosis in the control of neutrophil homeostasis in the circulation: insights from CD18-deficient mice. Blood 101, 739–746 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Desmouliere, A., Geinoz, A., Gabbiani, F. & Gabbiani, G. Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 122, 103–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83, 835–870 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Peters, T. et al. Wound-healing defect of CD18−/− mice due to a decrease in TGF-β1 and myofibroblast differentiation. EMBO J. 24, 3400–3410 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ussar, S., Wang, H. V., Linder, S., Fassler, R. & Moser, M. The Kindlins: subcellular localization and expression during murine development. Exp. Cell Res. 312, 3142–3151 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Bialkowska, K. et al. The integrin co-activator Kindlin-3 is expressed and functional in a non-hematopoietic cell, the endothelial cell. J. Biol. Chem. 285, 18640–18649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alon, R. & Etzioni, A. LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol. 24, 561–566 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Kuijpers, T. W. et al. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood 113, 4740–4746 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Malinin, N. L. et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nature Med. 15, 313–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Svensson, L. et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nature Med. 15, 306–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Sabnis, H. et al. Leukocyte adhesion deficiency-III in an African-American patient. Pediatr. Blood Cancer 55, 180–182 (2010).

    Article  PubMed  Google Scholar 

  59. Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nature Med. 14, 325–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Schmidt, S. et al. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J. Cell Biol. 192, 883–897 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alon, R. et al. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 101, 4437–4445 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Moser, M. et al. Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nature Med. 15, 300–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Kruger, M. et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364 (2008).

    Article  PubMed  CAS  Google Scholar 

  64. Mercuri, E. & Muntoni, F. The ever-expanding spectrum of congenital muscular dystrophies. Ann. Neurol. 72, 9–17 (2012).

    Article  PubMed  Google Scholar 

  65. Hayashi, Y. K. et al. Mutations in the integrin alpha7 gene cause congenital myopathy. Nature Genet. 19, 94–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Mayer, U. et al. Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nature Genet. 17, 318–323 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Nawrotzki, R., Willem, M., Miosge, N., Brinkmeier, H. & Mayer, U. Defective integrin switch and matrix composition at alpha 7-deficient myotendinous junctions precede the onset of muscular dystrophy in mice. Hum. Mol. Genet. 12, 483–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Flintoff-Dye, N. L. et al. Role for the α7 β1 integrin in vascular development and integrity. Dev. Dyn. 234, 11–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Monkley, S. J., Pritchard, C. A. & Critchley, D. R. Analysis of the mammalian talin2 gene TLN2. Biochem. Biophys. Res. Commun. 286, 880–885 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Debrand, E. et al. Mice carrying a complete deletion of the talin2 coding sequence are viable and fertile. Biochem. Biophys. Res. Commun. 426, 190–195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Belkin, A. M., Ornatsky, O. I., Glukhova, M. A. & Koteliansky, V. E. Immunolocalization of meta-vinculin in human smooth and cardiac muscles. J. Cell Biol. 107, 545–553 (1988).

    Article  CAS  PubMed  Google Scholar 

  72. Olson, T. M. et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 105, 431–437 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Vasile, V. C. et al. Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol. Genet. Metab. 87, 169–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Vasile, V. C., Ommen, S. R., Edwards, W. D. & Ackerman, M. J. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 345, 998–1003 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Vasile, V. C., Edwards, W. D., Ommen, S. R. & Ackerman, M. J. Obstructive hypertrophic cardiomyopathy is associated with reduced expression of vinculin in the intercalated disc. Biochem. Biophys. Res. Commun. 349, 709–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Zemljic-Harpf, A. E. et al. Heterozygous inactivation of the vinculin gene predisposes to stress-induced cardiomyopathy. Am. J. Pathol. 165, 1033–1044 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zemljic-Harpf, A. E. et al. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol. Cell. Biol. 27, 7522–7537 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Faulkner, G. et al. ZASP: a new Z-band alternatively spliced PDZ-motif protein. J. Cell Biol. 146, 465–475 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vatta, M. et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol 42, 2014–2027 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Selcen, D. & Engel, A. G. Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann. Neurol. 57, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Strach, K. et al. ZASPopathy with childhood-onset distal myopathy. J. Neurol. 259, 1494–1496 (2012).

    Article  PubMed  Google Scholar 

  83. Zhou, Q. et al. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J. Cell Biol. 155, 605–612 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng, M. et al. Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum. Mol. Genet. 18, 701–713 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Li, Z. et al. A ZASP missense mutation, S196L, leads to cytoskeletal and electrical abnormalities in a mouse model of cardiomyopathy. Circ. Arrhythm. Electrophysiol. 3, 646–656 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Litjens, S. H., de Pereda, J. M. & Sonnenberg, A. Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol. 16, 376–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Sawamura, D., Nakano, H. & Matsuzaki, Y. Overview of epidermolysis bullosa. J. Dermatol. 37, 214–219 (2010).

    Article  PubMed  Google Scholar 

  88. Georges-Labouesse, E. et al. Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nature Genet. 13, 370–373 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Dowling, J., Yu, Q. C. & Fuchs, E. β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J. Cell Biol. 134, 559–572 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. van der Neut, R., Krimpenfort, P., Calafat, J., Niessen, C. M. & Sonnenberg, A. Epithelial detachment due to absence of hemidesmosomes in integrin β4 null mice. Nature Genet. 13, 366–369 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Tosti, A., Duque-Estrada, B. & Murrell, D. F. Alopecia in epidermolysis bullosa. Dermatol. Clin. 28, 165–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Niculescu, C. et al. Conditional ablation of integrin alpha-6 in mouse epidermis leads to skin fragility and inflammation. Eur. J. Cell Biol. 90, 270–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Raymond, K., Kreft, M., Janssen, H., Calafat, J. & Sonnenberg, A. Keratinocytes display normal proliferation, survival and differentiation in conditional β4-integrin knockout mice. J. Cell Sci. 118, 1045–1060 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Has, C. et al. Integrin α3 mutations with kidney, lung, and skin disease. N. Engl. J. Med. 366, 1508–1514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nicolaou, N. et al. Gain of glycosylation in integrin alpha3 causes lung disease and nephrotic syndrome. J. Clin. Invest. 122, 4375–4387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kreidberg, J. A. et al. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122, 3537–3547 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A. & Hynes, R. O. α3β1 Integrin is required for normal development of the epidermal basement membrane. J. Cell Biol. 137, 729–742 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. deHart, G. W., Healy, K. E. & Jones, J. C. The role of α3β1 integrin in determining the supramolecular organization of laminin-5 in the extracellular matrix of keratinocytes. Exp. Cell Res. 283, 67–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Kindler, T. Congenital poikiloderma with traumatic bulla formation and progressive cutaneous atrophy. Br. J. Dermatol. 66, 104–111 (1954).

    Article  CAS  PubMed  Google Scholar 

  100. Siegel, D. H. et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet. 73, 174–187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ashton, G. H. et al. Recurrent mutations in kindlin-1, a novel keratinocyte focal contact protein, in the autosomal recessive skin fragility and photosensitivity disorder, Kindler syndrome. J. Invest. Dermatol. 122, 78–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Herz, C. et al. Kindlin-1 is a phosphoprotein involved in regulation of polarity, proliferation, and motility of epidermal keratinocytes. J. Biol. Chem. 281, 36082–36090 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Qu, H., Wen, T., Pesch, M. & Aumailley, M. Partial loss of epithelial phenotype in kindlin-1-deficient keratinocytes. Am. J. Pathol. 180, 1581–1592 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. D'Souza, M. A., Kimble, R. M. & McMillan, J. R. Kindler syndrome pathogenesis and fermitin family homologue 1 (kindlin-1) function. Dermatol. Clin. 28, 115–118 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Eke, I., Dickreuter, E. & Cordes, N. Enhanced radiosensitivity of head and neck squamous cell carcinoma cells by beta1 integrin inhibition. Radiother. Oncol. 104, 235–242 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569–571 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Avraamides, C. J., Garmy-Susini, B. & Varner, J. A. Integrins in angiogenesis and lymphangiogenesis. Nature Rev. Cancer 8, 604–617 (2008).

    Article  CAS  Google Scholar 

  108. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nature Rev. Cancer 10, 9–22 (2010).

    Article  CAS  Google Scholar 

  109. Robinson, S. D. & Hodivala-Dilke, K. M. The role of β3-integrins in tumor angiogenesis: context is everything. Curr. Opin. Cell Biol. 23, 630–637 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. & Defilippi, P. Integrin signalling adaptors: not only figurants in the cancer story. Nature Rev. Cancer 10, 858–870 (2010).

    Article  CAS  Google Scholar 

  111. Provenzano, P. P. & Keely, P. J. The role of focal adhesion kinase in tumor initiation and progression. Cell Adh. Migr. 3, 347–350 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wary, K. K., Kohler, E. E. & Chatterjee, I. Focal adhesion kinase regulation of neovascularization. Microvasc. Res. 83, 64–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Liao, Y. C. & Lo, S. H. Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. Int. J. Biochem. Cell Biol. 40, 843–847 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Durbin, A. D., Hannigan, G. E. & Malkin, D. Oncogenic ILK, tumor suppression and all that JNK. Cell Cycle 8, 4060–4066 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Hou, C. H., Yang, R. S., Hou, S. M. & Tang, C. H. TNF-α increases αvβ3 integrin expression and migration in human chondrosarcoma cells. J. Cell. Physiol. 226, 792–799 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Lee, C. Y. et al. IL-8 increases integrin expression and cell motility in human chondrosarcoma cells. J. Cell Biochem. 112, 2549–2557 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, C. M. et al. IGF-I enhances α5β1 integrin expression and cell motility in human chondrosarcoma cells. J. Cell. Physiol. 226, 3270–3277 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Nam, E. H., Lee, Y., Park, Y. K., Lee, J. W. & Kim, S. ZEB2 upregulates integrin α5 expression through cooperation with Sp1 to induce invasion during epithelial–mesenchymal transition of human cancer cells. Carcinogenesis 33, 563–571 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Liu, H. et al. MYC suppresses cancer metastasis by direct transcriptional silencing of αv and β3 integrin subunits. Nature Cell Biol. 14, 567–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Muller, D. W. & Bosserhoff, A. K. Integrin β3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene 27, 6698–6706 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Penna, E. et al. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J. 30, 1990–2007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Augoff, K. et al. miR-31 is a broad regulator of β1-integrin expression and function in cancer cells. Mol. Cancer Res. 9, 1500–1508 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fowler, A. et al. miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur. J. Cancer 47, 953–963 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Lu, H. et al. Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice. Circulation 114, 2271–2279 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Lopes, M. M. et al. Increased expression and phosphorylation of focal adhesion kinase correlates with dysfunction in the volume-overloaded human heart. Clin. Sci. (Lond.) 113, 195–204 (2007).

    Article  CAS  Google Scholar 

  126. Clemente, C. F. et al. Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice. Circ. Res. 101, 1339–1348 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Gu, R. et al. Increased expression of integrin-linked kinase improves cardiac function and decreases mortality in dilated cardiomyopathy model of rats. PLoS ONE 7, e31279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Traister, A. et al. ILK induces cardiomyogenesis in the human heart. PLoS ONE 7, e37802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dalla Costa, A. P. et al. FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovasc. Res. 86, 421–431 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. DiMichele, L. A. et al. Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circ. Res. 99, 636–645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Peng, X. et al. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J. Clin. Invest. 116, 217–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Zhu, L., Jiang, R., Aoudjit, L., Jones, N. & Takano, T. Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1621–1630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Legate, K. R., Montanez, E., Kudlacek, O. & Fassler, R. I.L. K. PINCH and parvin: the tIPP of integrin signalling. Nature Rev. Mol. Cell Biol. 7, 20–31 (2006).

    Article  CAS  Google Scholar 

  135. El-Aouni, C. et al. Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. J. Am. Soc. Nephrol. 17, 1334–1344 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Kanasaki, K. et al. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev. Biol. 313, 584–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Naves, M. A. et al. Podocyte Wnt/ss-catenin pathway is activated by integrin-linked kinase in clinical and experimental focal segmental glomerulosclerosis. J. Nephrol. 25, 401–409 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Hattori, M. et al. Increase of integrin-linked kinase activity in cultured podocytes upon stimulation with plasma from patients with recurrent FSGS. Am. J. Transplant 8, 1550–1556 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Ponticelli, C. Recurrence of focal segmental glomerular sclerosis (FSGS) after renal transplantation. Nephrol. Dial Transplant 25, 25–31 (2010).

    Article  PubMed  Google Scholar 

  140. El-Meanawy, A. et al. Identification of nephropathy candidate genes by comparing sclerosis-prone and sclerosis-resistant mouse strain kidney transcriptomes. BMC Nephrol. 13, 61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nishino, T., Sasaki, N., Nagasaki, K., Ahmad, Z. & Agui, T. Genetic background strongly influences the severity of glomerulosclerosis in mice. J. Vet. Med. Sci. 72, 1313–1318 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Triantafilou, M., Triantafilou, K., Wilson, K. M., Takada, Y. & Fernandez, N. High affinity interactions of Coxsackievirus A9 with integrin αvβ3 (CD51/61) require the CYDMKTTC sequence of β3, but do not require the RGD sequence of the CAV-9 VP1 protein. Hum. Immunol. 61, 453–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Raymond, T., Gorbunova, E., Gavrilovskaya, I. N. & Mackow, E. R. Pathogenic hantaviruses bind plexin-semaphorin-integrin domains present at the apex of inactive, bent alphavbeta3 integrin conformers. Proc. Natl Acad. Sci. USA 102, 1163–1168 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zarate, S., Romero, P., Espinosa, R., Arias, C. F. & Lopez, S. VP7 mediates the interaction of rotaviruses with integrin αvβ3 through a novel integrin-binding site. J. Virol. 78, 10839–10847 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Krishnan, H. H., Sharma-Walia, N., Streblow, D. N., Naranatt, P. P. & Chandran, B. Focal adhesion kinase is critical for entry of Kaposi's sarcoma-associated herpesvirus into target cells. J. Virol. 80, 1167–1180 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Upla, P. et al. Clustering induces a lateral redistribution of α2β1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol. Biol. Cell 15, 625–636 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jokinen, J. et al. Molecular mechanism of α2β1 integrin interaction with human echovirus 1. EMBO J. 29, 196–208 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, X., Huang, D. Y., Huong, S. M. & Huang, E. S. Integrin αvβ3 is a coreceptor for human cytomegalovirus. Nature Med. 11, 515–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Wickham, T. J., Mathias, P., Cheresh, D. A. & Nemerow, G. R. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319 (1993).

    Article  CAS  PubMed  Google Scholar 

  150. Li, E., Stupack, D., Klemke, R., Cheresh, D. A. & Nemerow, G. R. Adenovirus endocytosis via αv integrins requires phosphoinositide-3-OH kinase. J. Virol. 72, 2055–2061 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li, E., Stupack, D., Bokoch, G. M. & Nemerow, G. R. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J. Virol. 72, 8806–8812 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Amstutz, B. et al. Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J. 27, 956–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hauck, C. R., Agerer, F., Muenzner, P. & Schmitter, T. Cellular adhesion molecules as targets for bacterial infection. Eur. J. Cell Biol. 85, 235–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Hoffmann, C., Ohlsen, K. & Hauck, C. R. Integrin-mediated uptake of fibronectin-binding bacteria. Eur. J. Cell Biol. 90, 891–896 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Roca-Cusachs, P., Gauthier, N. C., Del Rio, A. & Sheetz, M. P. Clustering of α5β1 integrins determines adhesion strength whereas αVβ3 and talin enable mechanotransduction. Proc. Natl Acad. Sci. USA 106, 16245–16250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Agerer, F. et al. Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation. J. Cell Sci. 118, 2189–2200 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Kirkbride, K. C., Sung, B. H., Sinha, S. & Weaver, A. M. Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh. Migr 5, 187–198 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Slanina, H., Hebling, S., Hauck, C. R. & Schubert-Unkmeir, A. Cell invasion by Neisseria meningitidis requires a functional interplay between the focal adhesion kinase Src and cortactin. PLoS ONE 7, e39613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bougneres, L. et al. Cortactin and Crk cooperate to trigger actin polymerization during Shigella invasion of epithelial cells. J. Cell Biol. 166, 225–235 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Boehm, M. et al. Major host factors involved in epithelial cell invasion of Campylobacter jejuni: role of fibronectin, integrin beta1, FAK, Tiam-1, and DOCK180 in activating Rho GTPase Rac1. Front. Cell. Infect. Microbiol. 1, 17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wang, B., Yurecko, R. S., Dedhar, S. & Cleary, P. P. Integrin-linked kinase is an essential link between integrins and uptake of bacterial pathogens by epithelial cells. Cell. Microbiol. 8, 257–266 (2006).

    Article  PubMed  CAS  Google Scholar 

  162. Kim, M. et al. Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature 459, 578–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Muenzner, P., Rohde, M., Kneitz, S. & Hauck, C. R. CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells. J. Cell Biol. 170, 825–836 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hoffman, L. M. et al. Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling. J. Cell Biol. 172, 771–782 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Muenzner, P., Bachmann, V., Zimmermann, W., Hentschel, J. & Hauck, C. R. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science 329, 1197–1201 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Goodman, S. L. & Picard, M. Integrins as therapeutic targets. Trends Pharmacol. Sci. 33, 405–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Kane, S. V. et al. Natalizumab for moderate to severe Crohn's disease in clinical practice: the Mayo Clinic Rochester experience. Inflamm. Bowel Dis. 18, 2203–2208 (2012).

    CAS  Google Scholar 

  168. Gensicke, H. et al. Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis. CNS Drugs 26, 11–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Frampton, J. E. & Plosker, G. L. Efalizumab: a review of its use in the management of chronic moderate-to-severe plaque psoriasis. Am. J. Clin. Dermatol. 10, 51–72 (2009).

    Article  PubMed  Google Scholar 

  170. Kristensen, S. D. et al. Contemporary use of glycoprotein IIb/IIIa inhibitors. Thromb. Haemost. 107, 215–224 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. McLean, L. P., Shea-Donohue, T. & Cross, R. K. Vedolizumab for the treatment of ulcerative colitis and Crohn's disease. Immunotherapy 4, 883–898 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Reardon, D. A. & Cheresh, D. Cilengitide: a prototypic integrin inhibitor for the treatment of glioblastoma and other malignancies. Genes Cancer 2, 1159–1165 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Patla, I. et al. Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nature Cell Biol. 12, 909–915 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genet. 33, 228–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Ozsolak, F. & Milos, P. M. RNA sequencing: advances, challenges and opportunities. Nature Rev. Genet. 12, 87–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Choudhary, C. & Mann, M. Decoding signalling networks by mass spectrometry-based proteomics. Nature Rev. Mol. Cell Biol. 11, 427–439 (2010).

    Article  CAS  Google Scholar 

  179. Mann, M. & Kelleher, N. L. Precision proteomics: the case for high resolution and high mass accuracy. Proc. Natl Acad. Sci. USA 105, 18132–18138 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cox, J. & Mann, M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem. 80, 273–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Medalia, O. & Geiger, B. Frontiers of microscopy-based research into cell-matrix adhesions. Curr. Opin. Cell Biol. 22, 659–668 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. North, A. J., Galazkiewicz, B., Byers, T. J., Glenney, J. R. Jr & Small, J. V. Complementary distributions of vinculin and dystrophin define two distinct sarcolemma domains in smooth muscle. J. Cell Biol. 120, 1159–1167 (1993).

    Article  CAS  PubMed  Google Scholar 

  183. Bokstad, M., Sabanay, H., Dahan, I., Geiger, B. & Medalia, O. Reconstructing adhesion structures in tissues by cryo-electron tomography of vitrified frozen sections. J. Struct. Biol. 178, 76–83 (2012).

    Article  PubMed  Google Scholar 

  184. Nikolopoulos, S. N. et al. Targeted deletion of the integrin β4 signaling domain suppresses laminin-5-dependent nuclear entry of mitogen-activated protein kinases and NF-κB, causing defects in epidermal growth and migration. Mol. Cell. Biol. 25, 6090–6102 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. Zaidel-Bar for providing an updated version of the integrin adhesome. The authors also thank I. Sabanay, M. Bokstad and V. Small for providing the images for Fig. 1. The authors are grateful for the support of the European Research Council (ERC) under the European Community's Seventh Framework Programme (FP7/2007-2013), Advanced ERC Grant (ERC Grant Agreement no. 294852 to B.G. and ERC Grant Agreement no. 322652 to R.F.). They thank A. Pozzi for helpful discussions and to B. Morgenstern for expert editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Geiger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

The adhesome. (XLSX 27 kb)

Supplementary information S2 (table)

List of adhesome genes that lead to Mendelian hereditary disease (OMIM), and their corresponding disease and disease type. (XLSX 31 kb)

Supplementary information S3 (table)

List of adhesome genes associated with disease (GAD), and their corresponding diseases and disease type. (XLSX 42 kb)

Supplementary information S4 (figure)

Graphs of OMIM and GAD adhesome diseases. (PDF 400 kb)

Supplementary information S5 (table)

Virus interactions with integrins (PDF 145 kb)

Supplementary information S6 (table)

Bacterial interactions with integrins (PDF 134 kb)

Glossary

Integrins

A family of cell adhesion receptors that mediate either cell–cell interactions or cell–extracellular matrix interactions. Integrins are heterodimers with two distinct subunits, the α-subunit and the β-subunit.

Focal adhesions

Stable integrin-mediated, cell–substrate adhesion structures that anchor the termini of actin filaments (stress fibres) and mediate strong attachments to substrates. They also function as integrin signalling platforms.

Focal complexes

Small dot-like adhesions (1 μm in width) that are mainly found in lamellipodia. They are transient adhesion sites during cell migration and can mature into more stable focal adhesions.

Fibrillar adhesion

A form of integrin-mediated adhesion, which is typically associated with fibronectin fibres and has high levels of tensin and low levels of phosphorylated Tyr residues. These adhesions are less mechanosensitive than focal adhesions.

Podosomes

Adhesive, ring-like, actin-rich structures that are formed on the ventral surface of cells, such as monocytes, osteoclasts and smooth muscle cells.

Invadopodia

Extracellular matrix (ECM) contacts that are different from focal complexes and focal adhesions but similar to podosomes, which are associated with the invasion of cells into the ECM. Invadopodia can extend up to several micrometres, associate with ECM-degrading enzymes and are seen in transformed fibroblasts or malignant cells.

Mendelian genetic disorders

Inherited genetic diseases that are caused by mutations in one gene.

Multigenic diseases

Diseases that are caused by mutations or alterations in more than one gene.

Glanzmann's thrombasthenia

A bleeding disorder that arises from mutations in genes either encoding αIIb integrin or β3 integrin, which together form the fibrinogen receptor on platelets.

Leukocyte adhesion deficiency type III

(LAD-III). An autosomal recessive immunodeficiency disorder that is caused by mutations in the gene encoding kindlin 3, which reduces the activation of most integrins.

Leukocyte adhesion deficiency type I

(LAD-I). An autosomal recessive immunodeficiency disorder resulting from mutations in the gene encoding β2 integrin, which is expressed on several cells of the immune system.

Myotendinous junction

A specialized region located at the muscle–tendon interface that represents the primary site of force transmission.

Intercalated discs

Specialized cardiac muscle structures that join adjacent cardiomyocytes, mainly through adherens-type junctions.

Z-line

A region at the boundaries of muscle sarcomeres in which the actin filaments are anchored. It appears as a dark transverse line in electron micrographs.

Intermediate filaments

Cytoplasmic and nuclear proteins that polymerize into stable filaments of 10 nm in diameter. Their ability to form very stable filaments enables them to confer mechanical strength to the cytoskeleton.

Focal segmental glomerulosclerosis

(FSGS). A kidney disease that is characterized by gradual disintegration of the glomerular filtration units as a result of a loss of attachment between podocytes and the glomerular basement membrane.

Podocytes

Cells in the kidney that have a crucial function in the filtration of solutes in the blood to form urine.

Fab fragment

(Fragment antigen-binding). The antigen-binding portion of an antibody, which consists of the light chain and the heavy chain before the hinge region.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winograd-Katz, S., Fässler, R., Geiger, B. et al. The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15, 273–288 (2014). https://doi.org/10.1038/nrm3769

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3769

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing