Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Morbid obesity in pediatric diabetes mellitus: surgical options and outcomes

Abstract

The current obesity epidemic has led to a dramatic increase in insulin resistance and type 2 diabetes mellitus among adolescents, along with other obesity-related comorbidities, such as hypertension, hyperlipidemia, obstructive sleep apnea, psychosocial impairment and nonalcoholic fatty liver disease. Medical treatment of severe obesity is effective in only a small percentage of adolescent patients. In light of the potentially life-threatening complications of obesity, bariatric surgery can be considered a treatment option for adolescent patients with morbid obesity. Indications for surgery rely on both BMI and comorbidity criteria, as well as the ability of the adolescents and their family to understand and comply with perioperative protocols. The long-term effects of bariatric surgery in adolescents are not known; therefore, participation in prospective outcome studies is important. The risk associated with bariatric surgery in adolescents seems to be similar to that observed in adult patients in the short term. Data suggest that bypass procedures successfully reverse or improve abnormal glucose metabolism in the majority of patients and may be more effective in adolescents than adults. This improvement in glucose metabolism occurs before marked weight loss in patients undergoing bypass procedures, suggesting a direct effect on the hormonal control of glucose metabolism.

Key Points

  • Bariatric surgery has been shown to improve glucose metabolism in adolescents and adults with morbid obesity

  • Improvement in glucose metabolism after gastric bypass seems to be independent of weight loss, which suggests a direct hormonal effect

  • Bariatric surgery in adolescents seems to have the same short-term risks and benefits as seen in adults

  • The singular needs of adolescents make stringent indications for bariatric surgery mandatory

  • Early intervention in patients with insulin resistance could theoretically result in more effective reversal of this condition and prevention of diabetes mellitus

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current bariatric procedures for surgically induced weight loss.75

Similar content being viewed by others

References

  1. Hedley, A. A. et al. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA 291, 2847–2850 (2004).

    Article  CAS  Google Scholar 

  2. Leibson, C. L. et al. Temporal trends in BMI among adults with diabetes. Diabetes Care 24, 1584–1589 (2001).

    Article  CAS  Google Scholar 

  3. Centers for Disease Control and Prevention. 2 to 20 years: Girls BMI-for-age percentiles. CDC Growth Charts, [online] (2000).

  4. Fried, M. Bariatric surgery in paediatrics—when and how? Int. J. Pediatr. Obes. 1 (Suppl. 2), 15–19 (2008).

    Article  Google Scholar 

  5. Oude Luttikhuis, H. et al. Interventions for treating obesity in children. Cochrane Database Syst. Rev. Issue 1. Art. No.: CD001872. doi:10.1002/14651858.CD001872.pub2 (2009).

  6. Allcock, D. M., Gardner, M. J. & Sowers, J. R. Relation between childhood obesity and adult cardiovascular risk. Int. J. Pediatr. Endocrinol. 2009, 108187 (2009).

    Article  Google Scholar 

  7. Ogden, C. L., Carroll, M. D., Curtin, L. R., Lamb, M. M. & Flegal, K. M. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA 303, 242–249 (2010).

    Article  CAS  Google Scholar 

  8. Inge, T. H., Xanthakos, S. A. & Zeller, M. H. Bariatric surgery for pediatric extreme obesity: now or later? Int. J. Obes (Lond.). 31, 1–14 (2007).

    Article  CAS  Google Scholar 

  9. Xanthakos, S. et al. Histologic spectrum of nonalcoholic fatty liver disease in morbidly obese adolescents. Clin. Gastroenterol. Hepatol. 4, 226–232 (2006).

    Article  Google Scholar 

  10. Feldstein, A. E. et al. The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut 58, 1538–1544 (2009).

    Article  CAS  Google Scholar 

  11. Chavez-Tapia, N. C. et al. Bariatric surgery for non-alcoholic steatohepatitis in obese patients. Cochrane Database Syst. Rev. Issue 1. Art. No.: CD007340. doi:10.1002/14651858.CD007340.pub2 (2010).

  12. Ahrens, W. et al. Understanding and preventing childhood obesity and related disorders—IDEFICS: a European multilevel epidemiological approach. Nutr. Metab. Cardiovasc. Dis. 16, 302–308 (2006).

    Article  CAS  Google Scholar 

  13. Kalra, M. et al. Obstructive sleep apnea in extremely overweight adolescents undergoing bariatric surgery. Obes. Res. 13, 1175–1179 (2005).

    Article  Google Scholar 

  14. Wang, F., Wild, T. C., Kipp, W., Kuhle, S. & Veugelers, P. J. The influence of childhood obesity on the development of self-esteem. Health Rep. 20, 21–27 (2009).

    CAS  PubMed  Google Scholar 

  15. Needham, B. L. & Crosnoe, R. Overweight status and depressive symptoms during adolescence. J. Adolesc. Health 36, 48–55 (2005).

    Article  Google Scholar 

  16. Sanchez-Villegas, A. et al. Childhood and young adult overweight/obesity and incidence of depression in the SUN Project. Obesity doi:10.1038/oby.2009.375.

  17. Weiss, R. et al. Obesity and the metabolic syndrome in children and adolescents. N. Engl. J. Med. 350, 2362–2374 (2004).

    Article  CAS  Google Scholar 

  18. Gustafson, J. K. et al. The stability of metabolic syndrome in children and adolescents. J. Clin. Endocrinol. Metab. 94, 4828–4234 (2009).

    Article  CAS  Google Scholar 

  19. Srinivasan, S. R, Bao, W., Wattigney, W. A. & Berenson, G. S. Adolescent overweight is associated with adult overweight and related multiple cardiovascular risk factors: the Bogalusa Heart Study. Metabolism 45, 235–240 (1996).

    Article  CAS  Google Scholar 

  20. [No authors listed] Prevalence of abnormal lipid levels among youths—United States, 1999–2006. MMWR Morb. Mortal. Wkly Rep. 59, 29–33 (2010).

  21. Brufani, C. et al. Glucose tolerance status in 510 children and adolescents attending an obesity clinic in Central Italy. Pediatr. Diabetes 11, 47–54 (2010).

    Article  CAS  Google Scholar 

  22. Shalitin, S., Abrahami, M., Lilos, P. & Phillip, M. Insulin resistance and impaired glucose tolerance in obese children and adolescents referred to a tertiary-care center in Israel. Int. J. Obes. (Lond.) 29, 571–578 (2005).

    Article  CAS  Google Scholar 

  23. Felszeghy, E., Juhasz, E., Kaposzta, R. & Ilyes, I. Alterations of glucoregulation in childhood obesity—association with insulin resistance and hyperinsulinemia. J. Pediatr. Endocrinol. Metab. 21, 847–853 (2008).

    Article  CAS  Google Scholar 

  24. Wiegand, S. et al. Type 2 diabetes and impaired glucose tolerance in European children and adolescents with obesity—a problem that is no longer restricted to minority groups. Eur. J. Endocrinol. 151, 199–206 (2004).

    Article  CAS  Google Scholar 

  25. Sinha, R. et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N. Engl. J. Med. 346, 802–810 (2002).

    Article  CAS  Google Scholar 

  26. Narayan, K. M., Boyle, J. P., Thompson, T. J., Sorensen, S. W. & Williamson, D. F. Lifetime risk for diabetes mellitus in the United States. JAMA 290, 1884–1890 (2003).

    Article  CAS  Google Scholar 

  27. Leff, D. R. & Heath, D. Surgery for obesity in adulthood. BMJ 339, doi:10.1136/bmj.b3402 (2009).

  28. Ramos, A. C. et al. Laparoscopic duodenal-jejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI <30 kg/m2 (LBMI). Obes. Surg. 19, 307–312 (2009).

    Article  Google Scholar 

  29. Buchwald, H. et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 122, 248–256 (2009).

    Article  Google Scholar 

  30. Buchwald, H. et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 292, 1724–1737 (2004).

    Article  CAS  Google Scholar 

  31. Chandarana, K. et al. Subject standardization, acclimatization, and sample processing affect gut hormone levels and appetite in humans. Gastroenterology 136, 2115–2126 (2009).

    Article  CAS  Google Scholar 

  32. Fetner, R., McGinty, J., Russell, C., Pi-Sunyer, F. X. & Laferrère, B. Incretins, diabetes, and bariatric surgery: a review. Surg. Obes. Relat. Dis. 1, 589–597 (2005).

    Article  Google Scholar 

  33. Flint, A., Raben, A., Ersbøll, A. K., Holst, J. J. & Astrup, A. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int. J. Obes. Relat. Metab. Disord. 25, 781–792 (2001).

    Article  CAS  Google Scholar 

  34. Gutzwiller, J. P. et al. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 44, 81–86 (1999).

    Article  CAS  Google Scholar 

  35. Toft-Nielsen, M. B., Madsbad, S. & Holst, J. J. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 22, 1137–1143 (1999).

    Article  CAS  Google Scholar 

  36. Meier, J. J., Nauck, M. A., Schmidt, W. E. & Gallwitz, B. Gastric inhibitory polypeptide: the neglected incretin revisited. Regul. Pept. 107, 1–13 (2002).

    Article  CAS  Google Scholar 

  37. Naslund, E. et al. Distal small bowel hormones: correlation with fasting antroduodenal motility and gastric emptying. Dig. Dis. Sci. 43, 945–952 (1998).

    Article  CAS  Google Scholar 

  38. Clements, R. H., Gonzalez, Q. H., Long, C. I., Wittert, G. & Laws, H. L. Hormonal changes after Roux-en Y gastric bypass for morbid obesity and the control of type-II diabetes mellitus. Am. Surg. 70, 1–4 (2004).

    PubMed  Google Scholar 

  39. Laferrère, B. et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93, 2479–2485 (2008).

    Article  Google Scholar 

  40. Folli, F., Pontiroli, A. E. & Schwesinger, W. H. Metabolic aspects of bariatric surgery. Med. Clin. North Am. 91, 393–414 (2007).

    Article  CAS  Google Scholar 

  41. Ballantyne, G. H. Peptide YY(1–36) and peptide YY(3–36): Part I. Distribution, release and actions. Obes. Surg. 16, 651–658 (2006).

    Article  Google Scholar 

  42. Morínigo, R. et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J. Clin. Endocrinol. Metab. 91, 1735–1740 (2006).

    Article  Google Scholar 

  43. Korner, J. et al. Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity 14, 1553–1561 (2006).

    Article  CAS  Google Scholar 

  44. Cummings, D. E. & Overduin, J. Gastrointestinal regulation of food intake. J. Clin. Invest. 117, 13–23 (2007).

    Article  CAS  Google Scholar 

  45. Kageyama, H. et al. Morphological analysis of ghrelin and its receptor distribution in the rat pancreas. Regul. Pept. 126, 67–71 (2005).

    Article  CAS  Google Scholar 

  46. Cummings, D. E. & Shannon, M. H. Ghrelin and gastric bypass: is there a hormonal contribution to surgical weight loss? J. Clin. Endocrinol. Metab. 88, 2999–3002 (2003).

    Article  CAS  Google Scholar 

  47. Rubino, F. et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann. Surg. 244, 741–749 (2006).

    Article  Google Scholar 

  48. Dixon, J. B. et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299, 316–323 (2008).

    CAS  Google Scholar 

  49. Gumbs, A. A., Modlin, I. M. & Ballantyne, G. H. Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss. Obes. Surg. 15, 462–473 (2005).

    Article  Google Scholar 

  50. Camastra, S. et al. Beta-cell function in severely obese type 2 diabetic patients: long-term effects of bariatric surgery. Diabetes Care 30, 1002–1004 (2007).

    Article  CAS  Google Scholar 

  51. Inge, T. H. et al. Bariatric surgery for severely overweight adolescents: concerns and recommendations. Pediatrics 114, 217–223 (2004).

    Article  Google Scholar 

  52. Barlow, S. E. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics 120 (Suppl. 4), S164–S192 (2007).

    Article  Google Scholar 

  53. Pratt, J. S. et al. Best practice updates for pediatric/adolescent weight loss surgery. Obesity 17, 901–910 (2009).

    Article  Google Scholar 

  54. Apovian, C. M. et al. Best practice guidelines in pediatric/adolescent weight loss surgery. Obes. Res. 13, 274–282 (2005).

    Article  Google Scholar 

  55. Inge, T. H. et al. A multidisciplinary approach to the adolescent bariatric surgical patient. J. Pediatr. Surg. 39, 442–447 (2004).

    Article  Google Scholar 

  56. [No authors listed] Gastrointestinal surgery for severe obesity. NIH Consensus Development Program, [online] (1991).

  57. Nadler, E. P. et al. Laparoscopic adjustable gastric banding for morbidly obese adolescents affects android fat loss, resolution of comorbidities, and improved metabolic status. J. Am. Coll. Surg. 209, 638–644 (2009).

    Article  Google Scholar 

  58. Murray, P. J. Bariatric surgery in adolescents: mechanics, metabolism, and medical care. Adolesc. Med. State Art Rev. 19, 450–474 (2008).

    PubMed  Google Scholar 

  59. Strauss, R. S., Bradley, L. J. & Brolin, R. E. Gastric bypass surgery in adolescents with morbid obesity. J. Pediatr. 138, 499–504 (2001).

    Article  CAS  Google Scholar 

  60. O'Brien, P. E. et al. Laparoscopic adjustable gastric banding in severely obese adolescents: a randomized trial. JAMA 303, 519–526 (2010).

    Article  CAS  Google Scholar 

  61. Boehm, R. et al. Bariatric surgery in children and adolescents [German]. Zentralbl Chir. 134, 532–536 (2009).

    Article  CAS  Google Scholar 

  62. Treadwell, J. R., Sun, F. & Schoelles, K. Systematic review and meta-analysis of bariatric surgery for pediatric obesity. Ann. Surg. 248, 763–776 (2008).

    Article  Google Scholar 

  63. Frank, P. & Crookes, P. F. Short- and long-term surgical follow-up of the postbariatric surgery patient. Gastroenterol. Clin. North Am. 39, 135–146 (2010).

    Article  Google Scholar 

  64. Inge, T. H. et al. Baseline BMI is a strong predictor of nadir BMI after adolescent gastric bypass. J. Pediatr. 156, 103–108 (2010).

    Article  Google Scholar 

  65. Inge, T. H. et al. Reversal of type 2 diabetes mellitus and improvements in cardiovascular risk factors after surgical weight loss in adolescents. Pediatrics 123, 214–222 (2009).

    Article  Google Scholar 

  66. Renard, E. Bariatric surgery in patients with late-stage type 2 diabetes: expected beneficial effects on risk ratio and outcomes. Diabetes Metab. 35, 564–568 (2009).

    Article  CAS  Google Scholar 

  67. Xanthakos, S. A. & Inge, T. H. Nutritional consequences of bariatric surgery. Curr. Opin. Clin. Nutr. Metab. Care 9, 489–496 (2006).

    Article  CAS  Google Scholar 

  68. Shankar, P., Boylan, M. & Sriram, K. Micronutrient deficiencies after bariatric surgery. Nutrition doi:10.1016/j.nutr.2009.12/003.

  69. Towbin, A. et al. Beriberi after gastric bypass surgery in adolescence. J. Pediatr. 145, 263–267 (2004).

    Article  Google Scholar 

  70. Aasheim, E. T. Wernicke encephalopathy after bariatric surgery: a systematic review. Ann. Surg. 248, 714–720 (2008).

    PubMed  Google Scholar 

  71. Iannelli, A., Addeo, P. & Gugenheim, J. Re: Wernicke's encephalopathy after laparoscopic Roux-en-Y gastric bypass: a misdiagnosed complication. Obes. Surg. doi:10.1007/s11695-010-0206-z.

  72. Kushner, R. F., Gleason, B. & Shanta-Retelny, V. Reemergence of pica following gastric bypass surgery for obesity: a new presentation of an old problem. J. Am. Diet Assoc. 104, 1393–1397 (2004).

    Article  Google Scholar 

  73. Rhode, B. M., Shustik, C., Christou, N. V. & MacLean, L. D. Iron absorption and therapy after gastric bypass. Obes. Surg. 9, 17–21 (1999).

    Article  CAS  Google Scholar 

  74. Lynch, S. R. Interaction of iron with other nutrients. Nutr. Rev. 55, 102–110 (1997).

    Article  CAS  Google Scholar 

  75. Rubino, F., R'bibo, S. L., del Genio, F., Mazumdar, M. & McGraw, T. E. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat. Rev. Endocrinol. 6, 102–109 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to researching the data for the article, discussions of the content, writing of the article and reviewing and/or editing of the manuscript before submission. The names are in alphabetical order to represent this equal contribution.

Corresponding author

Correspondence to Mary L. Brandt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, M., Harmon, C., Helmrath, M. et al. Morbid obesity in pediatric diabetes mellitus: surgical options and outcomes. Nat Rev Endocrinol 6, 637–645 (2010). https://doi.org/10.1038/nrendo.2010.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.167

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing