Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond

Key Points

  • Sphingosine-1-phosphate (S1P) is a bioactive signalling molecule that is involved in several pathways that are crucial for health, and it has been implicated in disorders including cancer and inflammatory diseases. Efforts are underway to pharmacologically regulate S1P synthesis, degradation, export and receptor activation.

  • S1P is generated by two intracellular kinases — sphingosine kinase 1 (SPHK1) and SPHK2 — that are conserved from yeast to humans. SPHK1 typically promotes cell growth and inhibits apoptosis, and its upregulation has been linked to several types of cancer.

  • Intracellular S1P can be exported outside cells by several ATP-binding cassette (ABC) transporters and the major facilitator superfamily member SPNS2, which regulates S1P secretion from endothelial and lymphendothelial cells and is an attractive new therapeutic target. Many receptor agonists and stimuli induce the synthesis and export of S1P.

  • Extracellular S1P can bind to a family of five G protein-coupled receptors (S1P receptor 1 (S1PR1) to S1PR5) that can be coupled to multiple Gα proteins, thus leading to multiple cellular effects. These receptors are the targets of various compounds that are in different stages of drug development. In addition, S1PR1 is a target of fingolimod, which is used clinically for the treatment of multiple sclerosis.

  • S1PRs control the movement of cells into and out of the blood, circulating lymph and other tissues. Fingolimod and other compounds that target S1PR1 are being used to disrupt lymphocyte egress from lymph nodes in relapsing and remitting multiple sclerosis. Clinical trials are underway to investigate the efficacy of these drugs in other autoimmune diseases, including rheumatoid arthritis and lupus.

  • Other S1PRs are not as well studied, but they all have potential pathophysiological roles. S1PR2 typically inhibits the migration of osteoclasts and promotes osteoclast retention in bone and thus bone resorption. S1PR3 promotes cancer growth and vascular leakage during sepsis. S1PR4 has been implicated in certain immune cell functions, including dendritic cell function and T helper 17 (TH17) cell differentiation. Similar to the role of S1PR1 in lymphocyte trafficking, S1PR5 is required for the trafficking of natural killer cells into peripheral tissues.

Abstract

The bioactive lipid sphingosine-1-phosphate (S1P) is involved in multiple cellular signalling systems and has a pivotal role in the control of immune cell trafficking. As such, S1P has been implicated in disorders such as cancer and inflammatory diseases. This Review discusses the ways in which S1P might be therapeutically targeted — for example, via the development of chemical inhibitors that target the generation, transport and degradation of S1P and via the development of specific S1P receptor agonists. We also highlight recent conflicting results observed in preclinical studies targeting S1P and discuss ongoing clinical trials in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S1P biosynthesis, degradation, export and signalling.
Figure 2: The balance between beneficial and detrimental effects of S1PR1 agonists and antagonists.
Figure 3: The S1PR1–STAT3 axis linking inflammation and cancer.
Figure 4: S1PR1-mediated suppression of sprouting angiogenesis and stabilization of blood vessels.

Similar content being viewed by others

References

  1. Zhang, H. et al. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J. Cell Biol. 114, 155–167 (1991). This paper provided the first evidence to demonstrate that S1P is a bioactive lipid produced from sphingosine that regulates cellular proliferation.

    Article  CAS  PubMed  Google Scholar 

  2. Fyrst, H. & Saba, J. D. An update on sphingosine-1-phosphate and other sphingolipid mediators. Nature Chem. Biol. 6, 489–497 (2010).

    Article  CAS  Google Scholar 

  3. Pyne, S. & Pyne, N. J. Translational aspects of sphingosine 1-phosphate biology. Trends Mol. Med. 17, 463–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Orr Gandy, K. A. & Obeid, L. M. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors. Biochim. Biophys. Acta 1831, 157–166 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Maceyka, M., Harikumar, K. B., Milstien, S. & Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 22, 50–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Rosen, H., Stevens, R. C., Hanson, M., Roberts, E. & Oldstone, M. B. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu. Rev. Biochem. 82, 637–662 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Pyne, N. J. & Pyne, S. Sphingosine 1-phosphate and cancer. Nature Rev. Cancer 10, 489–503 (2010).

    Article  CAS  Google Scholar 

  8. Spiegel, S. & Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nature Rev. Immunol. 11, 403–415 (2011).

    Article  CAS  Google Scholar 

  9. Cyster, J. G. & Schwab, S. R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803 (1996). This paper established the concept of the sphingolipid rheostat complex, in which the balance between ceramide (the pro-apoptotic precursor of S1P) and the anti-apoptotic S1P determines cell fate.

    Article  CAS  PubMed  Google Scholar 

  11. Brinkmann, V. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nature Rev. Drug Discov. 9, 883–897 (2010).

    Article  CAS  Google Scholar 

  12. Alvarez, S. E. et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hait, N. C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009). This was the first demonstration that HDACs are direct intracellular targets of S1P and are formed in the nucleus by SPHK2, thus linking nuclear sphingolipid metabolism to gene regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takasugi, N. et al. BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. J. Neurosci. 31, 6850–6857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, R. H., Takabe, K., Milstien, S. & Spiegel, S. Export and functions of sphingosine-1-phosphate. Biochim. Biophys. Acta 1791, 692–696 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawahara, A. et al. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323, 524–527 (2009). This study showed that SPNS2 is an S1P transporter that has an important role in cardiac development in zebrafish. This study led to the later demonstration that mammalian SPNS2 analogues are also S1P transporters.

    Article  CAS  PubMed  Google Scholar 

  17. Nagahashi, M. et al. Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels, and the lymphatic network. FASEB J. 27, 1001–1011 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hisano, Y., Kobayashi, N., Yamaguchi, A. & Nishi, T. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS ONE 7, e38941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukuhara, S. et al. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J. Clin. Invest. 122, 1416–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mendoza, A. et al. The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate. Cell Rep. 2, 1104–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Breart, B. et al. Lipid phosphate phosphatase 3 enables efficient thymic egress. J. Exp. Med. 208, 1267–1278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang, J. et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23, 107–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Mizugishi, K. et al. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol. 25, 11113–11121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Rev. Mol. Cell. Biol. 9, 139–150 (2008).

    Article  CAS  Google Scholar 

  25. Lee, H. et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nature Med. 16, 1421–1428 (2010). This study showed that persistent activation of STAT3 in tumours involves S1P and S1PR1 in a malicious feedforward cycle.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y. et al. S1PR1 is an effective target to block STAT3 signaling in activated B cell-like diffuse large B-cell lymphoma. Blood 120, 1458–1465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng, J. et al. S1PR1–STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21, 642–654 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagahashi, M. et al. Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by tumor-induced angiogenesis and lymphangiogenesis. Cancer Res. 72, 726–735 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ponnusamy, S. et al. Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol. Med. 4, 761–775 (2012). This paper highlighted that S1P is involved in the communication between tumours and hosts to regulate metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruckhaberle, E. et al. Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res. Treat. 112, 41–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Kawamori, T. et al. Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J. 23, 405–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Pyne, S., Edwards, J., Ohotski, J. & Pyne, N. J. Sphingosine 1-phosphate receptors and sphingosine kinase 1: novel biomarkers for clinical prognosis in breast, prostate, and hematological cancers. Front. Oncol. 2, 168 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Paugh, S. W. et al. A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112, 1382–1391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kharel, Y. et al. Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochem. J. 440, 345–353 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Schnute, M. E. et al. Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem. J. 444, 79–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Pyne, S., Bittman, R. & Pyne, N. J. Sphingosine kinase inhibitors and cancer: seeking the golden sword of Hercules. Cancer Res. 71, 6576–6582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, Z. et al. Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 21, 798–809 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Chipuk, J. E. et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148, 988–1000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gomez, L. et al. A novel role for mitochondrial sphingosine-1-phosphate produced by sphingosine kinase-2 in PTP-mediated cell survival during cardioprotection. Bas. Res. Cardiol. 106, 1341–1353 (2011).

    Article  CAS  Google Scholar 

  40. Vessey, D. A. et al. A sphingosine kinase form 2 knockout sensitizes mouse myocardium to ischemia/reoxygenation injury and diminishes responsiveness to ischemic preconditioning. Oxid. Med. Cell. Longev. 2011, 961059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Strub, G. M. et al. Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J. 25, 600–612 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. French, K. J. et al. Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J. Pharmacol. Exp. Ther. 333, 129–139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Antoon, J. W. et al. Antiestrogenic effects of the novel sphingosine kinase-2 inhibitor ABC294640. Endocrinology 151, 5124–5135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kharel, Y. et al. Sphingosine kinase type 2 inhibition elevates circulating sphingosine 1-phosphate. Biochem. J. 447, 149–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Samy, E. T. et al. Cutting edge: modulation of intestinal autoimmunity and IL-2 signaling by sphingosine kinase 2 independent of sphingosine 1-phosphate. J. Immunol. 179, 5644–5648 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Maines, L. W., Fitzpatrick, L. R., Green, C. L., Zhuang, Y. & Smith, C. D. Efficacy of a novel sphingosine kinase inhibitor in experimental Crohn's disease. Inflammopharmacology 18, 73–85 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Chumanevich, A. A. et al. Suppression of colitis-driven colon cancer in mice by a novel small molecule inhibitor of sphingosine kinase. Carcinogenesis 31, 1787–1793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baker, D. A., Barth, J., Chang, R., Obeid, L. M. & Gilkeson, G. S. Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-alpha-induced arthritis. J. Immunol. 185, 2570–2579 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Fitzpatrick, L. R. et al. Attenuation of arthritis in rodents by a novel orally-available inhibitor of sphingosine kinase. Inflammopharmacology 19, 75–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Kazantsev, A. G. & Thompson, L. M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Rev. Drug Discov. 7, 854–868 (2008).

    Article  CAS  Google Scholar 

  51. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nature Rev. Genet. 10, 32–42 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Fischer, A., Sananbenesi, F., Mungenast, A. & Tsai, L. H. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol. Sci. 31, 605–617 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Nakahara, K. et al. The Sjogren–Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol. Cell 46, 461–471 (2012). This study showed that the S1P metabolite hexadecenal is implicated in the pathogenesis of Sjögren–Larsson syndrome as a result of mutations in ALDH3A2 , which is needed to metabolize the hexedecanal produced from S1P by S1P lyase.

    Article  CAS  PubMed  Google Scholar 

  54. Aguilar, A. & Saba, J. D. Truth and consequences of sphingosine-1-phosphate lyase. Adv. Biol. Regul. 52, 17–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Ihlefeld, K., Claas, R. F., Koch, A., Pfeilschifter, J. M. & Meyer Zu Heringdorf, D. Evidence for a link between histone deacetylation and Ca2+ homoeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts. Biochem. J. 447, 457–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Schwab, S. R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005). This important study established that lymphocyte egress is mediated by S1P gradients that are established by S1P lyase activity.

    Article  CAS  PubMed  Google Scholar 

  57. Bagdanoff, J. T. et al. Inhibition of sphingosine 1-phosphate lyase for the treatment of rheumatoid arthritis: discovery of (E)-1-(4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H-imidazol-2-yl)ethanone oxime (LX2931) and (1R,2S,3R)-1-(2-(isoxazol-3-yl)-1H-imidazol-4-yl)butane-1,2,3,4-tetraol (LX2932). J. Med. Chem. 53, 8650–8662 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Bourquin, F., Riezman, H., Capitani, G. & Grutter, M. G. Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism. Structure 18, 1054–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Nagata, Y., Partridge, T. A., Matsuda, R. & Zammit, P. S. Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. J. Cell Biol. 174, 245–253 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Loh, K. C. et al. Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. PLoS ONE 7, e37218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pantoja, M., Fischer, K. A., Ieronimakis, N., Reyes, M. & Ruohola-Baker, H. Genetic elevation of sphingosine 1-phosphate suppresses dystrophic muscle phenotypes in Drosophila. Development 140, 136–146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hanson, M. A. et al. Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012). The first X-ray crystal structure of an S1PR, namely S1PR1, was reported in this paper. This structure provided a detailed view of the binding site of S1P and paves the way for the development of more specific agonists and antagonists that could be clinically useful.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002). This study elucidated the mechanism of immunosuppression induced by fingolimod and showed that its phosphorylated form signals through S1PR1 to interfere with lymphocyte trafficking.

    Article  CAS  PubMed  Google Scholar 

  64. Brinkmann, V. et al. The immune modulator, FTY720, targets sphingosine 1-phosphate receptors. J. Biol. Chem. 277, 21453–21457 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Graler, M. H. & Goetzl, E. J. The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G protein-coupled receptors. FASEB J. 18, 551–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Gonzalez-Cabrera, P. J. et al. S1P1 receptor modulation with cyclical recovery from lymphopenia ameliorates mouse model of multiple sclerosis. Mol. Pharmacol. 81, 166–174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Neviani, P. et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J. Clin. Invest. 117, 2408–2421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gergely, P. et al. The selective S1P receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate: translation from preclinical to clinical studies. Br. J. Pharmacol. 167, 1035–1047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Komiya, T. et al. Efficacy and immunomodulatory actions of ONO-4641, a novel selective agonist for sphingosine 1-phosphate receptors 1 and 5, in preclinical models of multiple sclerosis. Clin. Exp. Immunol. 171, 54–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Piali, L. et al. The selective sphingosine 1-phosphate receptor 1 agonist ponesimod protects against lymphocyte-mediated tissue inflammation. J. Pharmacol. Exp. Ther. 337, 547–556 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Willis, M. A. & Cohen, J. A. Fingolimod therapy for multiple sclerosis. Semin. Neurol. 33, 37–44 (2013).

    Article  PubMed  Google Scholar 

  72. Nolan, R., Gelfand, J. M. & Green, A. J. Fingolimod treatment in multiple sclerosis leads to increased macular volume. Neurology 80, 139–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Quancard, J. et al. A potent and selective S1P1 antagonist with efficacy in experimental autoimmune encephalomyelitis. Chem. Biol. 19, 1142–1151 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Choi, J. W. et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc. Natl Acad. Sci. USA 108, 751–756 (2011).

    Article  PubMed  Google Scholar 

  75. Sanna, M. G. et al. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nature Chem. Biol. 2, 434–441 (2006).

    Article  CAS  Google Scholar 

  76. Teijaro, J. R. et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146, 980–991 (2011). This study showed that S1PR1 agonists can suppress cytokines and innate immune cell recruitment, and it identified endothelial cells as central regulators of the cytokine storm induced by viral infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsuoka, Y., Nagahara, Y., Ikekita, M. & Shinomiya, T. A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. Br. J. Pharmacol. 138, 1303–1312 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, Q. et al. FTY720 demonstrates promising preclinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood 111, 275–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Roberts, K. G. et al. Essential requirement for PP2A inhibition by the oncogenic receptor c-KIT suggests PP2A reactivation as a strategy to treat c-KIT+ cancers. Cancer Res. 70, 5438–5447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, Z., Jiang, H., Chen, S., Du, F. & Wang, X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Rev. Immunol. 7, 41–51 (2007).

    Article  CAS  Google Scholar 

  83. Ding, B. B. et al. Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood 111, 1515–1523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Rev. Cancer 9, 798–809 (2009).

    Article  CAS  Google Scholar 

  85. Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951–961 (2000). This is the first demonstration of the essential role of S1PR1 in vascular integrity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shoham, A. B. et al. S1P1 inhibits sprouting angiogenesis during vascular development. Development 139, 3859–3869 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Gaengel, K. et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev. Cell 23, 587–599 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Jung, B. et al. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev. Cell 23, 600–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ishii, M. et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ishii, M., Kikuta, J., Shimazu, Y., Meier-Schellersheim, M. & Germain, R. N. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J. Exp. Med. 207, 2793–2798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kikuta, J. et al. Sphingosine-1-phosphate-mediated osteoclast precursor monocyte migration is a critical point of control in antibone-resorptive action of active vitamin D. Proc. Natl Acad. Sci. USA 110, 7009–7013 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Long, J. S. et al. Sphingosine 1-phosphate receptor 4 uses HER2 (ERBB2) to regulate extracellular signal regulated kinase-1/2 in MDA-MB-453 breast cancer cells. J. Biol. Chem. 285, 35957–35966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Salomone, S. & Waeber, C. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects. Front. Pharmacol. 2, 9 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Sukocheva, O. et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J. Cell Biol. 173, 301–310 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Watson, C. et al. High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. Am. J. Pathol. 177, 2205–2215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harris, G. L., Creason, M. B., Brulte, G. B. & Herr, D. R. In vitro and in vivo antagonism of a G protein-coupled receptor (S1P3) with a novel blocking monoclonal antibody. PLoS ONE 7, e35129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sammani, S. et al. Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am. J. Respir. Cell. Mol. Biol. 43, 394–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Niessen, F. et al. Dendritic cell PAR1–S1P3 signalling couples coagulation and inflammation. Nature 452, 654–658 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Sun, X. et al. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am. J. Respir. Cell. Mol. Biol. 47, 628–636 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schulze, T. et al. Sphingosine-1-phospate receptor 4 (S1P4) deficiency profoundly affects dendritic cell function and TH17-cell differentiation in a murine model. FASEB J. 25, 4024–4036 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Allende, M. L. et al. Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J. Biol. Chem. 286, 7348–7358 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Urbano, M. et al. SAR analysis of innovative selective small molecule antagonists of sphingosine-1-phosphate 4 (S1P4) receptor. Bioorg. Med. Chem. Lett. 21, 5470–5474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jenne, C. N. et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med. 206, 2469–2481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mattes, H. et al. Design and synthesis of selective and potent orally active S1P5 agonists. ChemMedChem 5, 1693–1696 (2010).

    Article  PubMed  Google Scholar 

  105. Yang, L. et al. Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. J. Hepatol. 59, 114–123 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Kapitonov, D. et al. Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res. 69, 6915–6923 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Price, M. M. et al. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent mouse model of allergic asthma. J. Allergy Clin. Immunol. 131, 501–511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dickson, M. A. et al. A phase I clinical trial of safingol in combination with cisplatin in advanced solid tumors. Clin. Cancer Res. 17, 2484–2492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gao, P., Peterson, Y. K., Smith, R. A. & Smith, C. D. Characterization of isoenzyme-selective inhibitors of human sphingosine kinases. PLoS ONE 7, e44543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Antoon, J. W. et al. Pharmacological inhibition of sphingosine kinase isoforms alters estrogen receptor signaling in human breast cancer. J. Mol. Endocrinol. 46, 205–216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, Q. et al. Inhibition of sphingosine kinase-2 suppresses inflammation and attenuates graft injury after liver transplantation in rats. PLoS ONE 7, e41834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Finney, C. A. et al. S1P is associated with protection in human and experimental cerebral malaria. Mol. Med. 17, 717–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Scuto, A. et al. STAT3 inhibition is a therapeutic strategy for ABC-like diffuse large B-cell lymphoma. Cancer Res. 71, 3182–3188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Saddoughi, S. A. et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol. Med. 5, 105–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Shimizu, H. et al. KRP-203, a novel synthetic immunosuppressant, prolongs graft survival and attenuates chronic rejection in rat skin and heart allografts. Circulation 111, 222–229 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Suzuki, C. et al. Efficacy of mycophenolic acid combined with KRP-203, a novel immunomodulator, in a rat heart transplantation model. J. Heart Lung Transplant. 25, 302–309 (2006).

    Article  PubMed  Google Scholar 

  117. Song, J. et al. A novel sphingosine 1-phosphate receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice. J. Pharmacol. Exp. Ther. 324, 276–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Wenderfer, S. E., Stepkowski, S. M. & Braun, M. C. Increased survival and reduced renal injury in MRL/lpr mice treated with a novel sphingosine-1-phosphate receptor agonist. Kidney Int. 74, 1319–1326 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Poti, F. et al. Effect of sphingosine 1-phosphate (S1P) receptor agonists FTY720 and CYM5442 on atherosclerosis development in LDL receptor deficient (LDL-R−/−) mice. Vascul. Pharmacol. 57, 56–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, Z. Y. et al. AUY954, a selective S1P1 modulator, prevents experimental autoimmune neuritis. J. Neuroimmunol. 216, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Galicia-Rosas, G. et al. A sphingosine-1-phosphate receptor 1-directed agonist reduces central nervous system inflammation in a plasmacytoid dendritic cell-dependent manner. J. Immunol. 189, 3700–3706 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Lien, Y. H., Yong, K. C., Cho, C., Igarashi, S. & Lai, L. W. S1P1-selective agonist, SEW2871, ameliorates ischemic acute renal failure. Kidney Int. 69, 1601–1608 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Awad, A. S. et al. Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes. Kidney Int. 79, 1090–1098 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jo, E. et al. S1P1-selective in vivo-active agonists from high- throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate. Chem. Biol. 12, 703–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Nishi, T. et al. Discovery of CS-0777: a potent, selective, and orally active S1P1 agonist. ACS Med. Chem. Lett. 2, 368–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Marsolais, D. et al. A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection. Proc. Natl Acad. Sci. USA 106, 1560–1565 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fujii, Y. et al. Amelioration of collagen-induced arthritis by a novel S1P1 antagonist with immunomodulatory activities. J. Immunol. 188, 206–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Gonzalez-Cabrera, P. J. et al. Full pharmacological efficacy of a novel S1P1 agonist that does not require S1P-Like headgroup interactions. Mol. Pharmacol. 74, 1308–1318 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Davis, M. D., Clemens, J. J., Macdonald, T. L. & Lynch, K. R. Sphingosine 1-phosphate analogs as receptor antagonists. J. Biol. Chem. 280, 9633–9641 (2005).

    Article  CAS  Google Scholar 

  130. Tarrason, G. et al. The sphingosine-1-phosphate receptor-1 antagonist, W146, causes early and short-lasting peripheral blood lymphopenia in mice. Int. Immunopharmacol. 11, 1773–1779 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Finley, A. et al. Sphingosine 1-phosphate mediates hyperalgesia via a neutrophil-dependent mechanism. PLoS ONE 8, e55255 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kluk, M. J. et al. Sphingosine-1-phosphate receptor 1 in classical Hodgkin lymphoma: assessment of expression and role in cell migration. Lab. Invest. 93, 462–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Foss, F. W. Jr et al. Synthesis and biological evaluation of γ-aminophosphonates as potent, subtype-selective sphingosine 1-phosphate receptor agonists and antagonists. Bioorg. Med. Chem. 15, 663–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Skoura, A. et al. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 81–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Ikeda, H. et al. Antiproliferative property of sphingosine 1-phosphate in rat hepatocytes involves activation of Rho via Edg-5. Gastroenterology 124, 459–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Bolli, M. H. et al. 2-imino-thiazolidin-4-one derivatives as potent, orally active S1P1 receptor agonists. J. Med. Chem. 53, 4198–4211 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Visentin, B. et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9, 225–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Caballero, S. et al. Anti-sphingosine-1-phosphate monoclonal antibodies inhibit angiogenesis and sub-retinal fibrosis in a murine model of laser-induced choroidal neovascularization. Exp. Eye Res. (2008).

  139. Sanada, Y. et al. Therapeutic effects of novel sphingosine-1-phosphate receptor agonist W-061 in murine DSS colitis. PLoS ONE 6, e23933 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Clemens, J. J., Davis, M. D., Lynch, K. R. & Macdonald, T. L. Synthesis of benzimidazole based analogues of sphingosine-1-phosphate: discovery of potent, subtype-selective S1P4 receptor agonists. Bioorg. Med. Chem. Lett. 14, 4903–4906 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Ota, H. et al. S1P4 receptor mediates S1P-induced vasoconstriction in normotensive and hypertensive rat lungs. Pulm. Circ. 1, 399–404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Song, J., Hagiya, H., Kurata, H., Mizuno, H. & Ito, T. Prevention of GVHD and graft rejection by a new S1P receptor agonist, W-061, in rat small bowel transplantation. Transpl. Immunol. 26, 163–170 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of S.S. is supported by grants R37GM043880 and RO1CA61774 from the US National Institutes of Health (NIH). The work of G.T.K. is supported by the NIH grant T32 HL094290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Spiegel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov website

PowerPoint slides

Glossary

Angiogenesis

The development of new blood vessels. Angiogenesis is required in development and tissue repair, as well as pathologically for tumour progression.

Fingolimod

A sphingosine-1-phosphate receptor (S1PR) agonist. However, sustained activation of S1PR1 by fingolimod leads to degradation of S1PR1. Thus, fingolimod is often referred to as a 'functional antagonist' of S1PR1, particularly in its role in lymphocyte trafficking.

Histone deacetylases

(HDACs). Proteins that remove acetyl groups from specific histone lysine residues, thus altering gene transcription.

ABC transporters

(ATP-binding cassette transporters). A family of proteins that transport small molecules across the membrane, including drugs and lipids. Several of these proteins have been shown to transport sphingosine-1-phosphate.

'Inside-out' signalling

A model whereby agonists such as growth factors promote the production of sphingosine-1-phosphate (S1P) within the cell. This S1P is then exported outside the cell to signal through cell surface S1P receptors in an autocrine and/or paracrine manner.

Lymphopenia

An abnormally low level of lymphocytes in the blood.

Sphingolipid rheostat concept

A concept that describes how the metabolic balance between sphingosine-1-phosphate (S1P) and ceramide regulates cell fate. S1P-mediated signals mostly regulate cell survival and proliferation, whereas ceramide-mediated signals regulate growth inhibition and apoptosis.

Myeloid cell

A blood cell type that includes macrophages, monocytes, neutrophils, basophils, eosinophils, erythrocytes, megakaryocytes and dendritic cells but not lymphocytes.

Lymphangiogenesis

The development of new lymph vessels. Lymphangiogenesis is required in development and for tissue repair, as well as for the metastasis of some tumours, such as breast cancer tumours.

Sjögren–Larsson syndrome

An autosomal recessive form of ichthyosis (scaly, dry, thickened skin) that is characterized by spastic paraplegia and mild to moderate intellectual disability.

Ichthyosis

A family of mostly genetic skin disorders characterized by dry, thickened, scaly skin, often with cracks.

mdx mice

A mouse model of Duchenne muscular dystrophy, which is a muscle-wasting disease that is caused by a mutation in the X-linked dystrophin gene, leading to loss of expression of the dystrophin protein.

Plaque psoriasis

An autoimmune disorder of the skin in which the patient typically presents with scaly patches of skin with a red and/or white hue.

Bradycardia

A decreased resting heart rate that results in in dizziness, weakness and fatigue.

Macular oedema

The accumulation of fluid and protein in the macula (visual field), leading to swelling and loss of vision.

Experimental autoimmune encephalomyelitis

(EAE). An animal model of inflammation-induced demyelinating disease, often used as a proxy for human multiple sclerosis.

Cytokine storm

A potentially fatal immune reaction consisting of a positive feedback loop between highly elevated levels of many cytokines with immune cells.

Sprouting angiogenesis

The process of developing new blood vessels in which angiogenic factors bind to receptors on endothelial cells of a blood vessel. These cells grow out and form sprouts connecting to other blood vessels.

Laminar shear stress

The stress on tissues derived from the flow of a fluid through the vessel.

Osteoporosis

A bone-thinning disease that is characterized by overactive bone resorption by osteoclasts, reduced bone formation by osteoblasts, or both.

Sepsis syndrome

A life-threatening systemic response to severe infection that is characterized by vascular leakage and oedema, hypo- or hyperthermia, low blood pressure and reduced lung function.

Dendritic cell

A cell type that has a central role in the adaptive immune response by presenting antigens to lymphocytes and causing their activation.

TH17 cell

T helper 17 cell; a subset of T helper cells that secrete pro-inflammatory cytokines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunkel, G., Maceyka, M., Milstien, S. et al. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12, 688–702 (2013). https://doi.org/10.1038/nrd4099

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4099

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer