Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome

Abstract

The intercalated discs that connect cardiomyocytes control cell-to-cell adhesion and communication. Several macromolecular structures (desmosomes, fascia adherens junctions, gap junctions, and sodium-channel complexes) coexist in, and confer their mechanical and electrical properties to, the intercalated disc. Traditionally, each structure was assumed to have a unique function in the intercalated disc. However, growing evidence suggests that these complexes act together in intercellular communication and adhesion, forming a single structural and functional entity — the connexome. This nascent idea has provided conceptual support for the overlapping of two diseases based on disturbance of the intercalated disc — arrhythmogenic cardiomyopathy (ACM) and Brugada syndrome (BrS). In this Perspectives article, we present the latest findings about the functions of, and interactions between, the structures of the intercalated disc that support the concept of the connexome. We also summarize the genetic, molecular, and pathophysiological mechanisms underlying ACM and BrS, focusing on the overlap between these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The components of the intercalated disc.
Figure 2: Genes associated with arrhythmogenic cardiomyopathy and Brugada syndrome.
Figure 3: Distribution of structures in the intercalated disc of cardiomyocytes.
Figure 4: Intercalated disc maturation.
Figure 5: Molecular and cellular effects of PKP2.
Figure 6: Factors modulating SCN5A gene expression.
Figure 7: Proposed mechanisms of arrhythmogenic cardiomyopathy and Brugada syndrome.

Similar content being viewed by others

References

  1. Franke, W. W., Borrmann, C. M., Grund, C. & Pieperhoff, S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur. J. Cell Biol. 85, 69–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Franke, W. W. et al. The area composita of adhering junctions connecting heart muscle cells of vertebrates — III: assembly and disintegration of intercalated disks in rat cardiomyocytes growing in culture. Eur. J. Cell Biol. 86, 127–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Borrmann, C. M. et al. The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur. J. Cell Biol. 85, 469–485 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Goossens, S. et al. A unique and specific interaction between alphaT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs. J. Cell Sci. 120, 2126–2136 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Sato, P. Y. et al. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ. Res. 105, 523–526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oxford, E. M. et al. Connexin43 remodeling caused by inhibition of plakophilin-2 expression in cardiac cells. Circ. Res. 101, 703–711 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Agullo-Pascual, E., Cerrone, M. & Delmar, M. Arrhythmogenic cardiomyopathy and Brugada syndrome: diseases of the connexome. FEBS Lett. 588, 1322–1330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Basso, C., Bauce, B., Corrado, D. & Thiene, G. Pathophysiology of arrhythmogenic cardiomyopathy. Nat. Rev. Cardiol. 9, 223–233 (2012).

    Article  CAS  Google Scholar 

  9. Sieira, J., Dendramis, G. & Brugada, P. Pathogenesis and management of Brugada syndrome. Nat. Rev. Cardiol. 13, 744–756 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Corrado, D. et al. Relationship between arrhythmogenic right ventricular cardiomyopathy and Brugada syndrome: new insights from molecular biology and clinical implications. Circ. Arrhythm. Electrophysiol. 9, e003631 (2016).

    Article  PubMed  Google Scholar 

  11. Delmar, M. Desmosome-ion channel interactions and their possible role in arrhythmogenic cardiomyopathy. Pediatr. Cardiol. 33, 975–979 (2012).

    Article  PubMed  Google Scholar 

  12. Nademanee, K. et al. Fibrosis, connexin-43, and conduction abnormalities in the Brugada syndrome. J. Am. Coll. Cardiol. 66, 1976–1986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peters, S. Arrhythmogenic cardiomyopathy and provocable Brugada ECG in a patient caused by missense mutation in plakophilin-2. Int. J. Cardiol. 173, 317–318 (2014).

    Article  PubMed  Google Scholar 

  14. Corrado, D., Basso, C. & Thiene, G. Is it time to include ion channel diseases among cardiomyopathies? J. Electrocardiol. 38, 81–87 (2005).

    Article  PubMed  Google Scholar 

  15. Campuzano, O. et al. Genetics of arrhythmogenic right ventricular cardiomyopathy. J. Med. Genet. 50, 280–289 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe, H. & Minamino, T. Genetics of Brugada syndrome. J. Hum. Genet. 61, 57–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Cerrone, M. et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation 129, 1092–1103 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. te Riele, A. S. J. M. et al. Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc. Res. 113, 102–111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herren, T., Gerber, P. A. & Duru, F. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a not so rare 'disease of the desmosome' with multiple clinical presentations. Clin. Res. Cardiol. 98, 141–158 (2009).

    Article  PubMed  Google Scholar 

  20. Patel, D. M. & Green, K. J. Desmosomes in the heart: a review of clinical and mechanistic analyses. Cell Commun. Adhes. 21, 109–128 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Lazzarini, E. et al. The ARVD/C genetic variants database: 2014 update. Hum. Mutat. 36, 403–410 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Christensen, A. H., Benn, M., Tybjaerg-Hansen, A., Haunso, S. & Svendsen, J. H. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients — disease-causing or innocent bystanders? Cardiology 115, 148–154 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Ackerman, M. J. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13, 1077–1109 (2011).

    Article  PubMed  Google Scholar 

  24. Green, K. J. & Simpson, C. L. Desmosomes: new perspectives on a classic. J. Invest. Dermatol. 127, 2499–2515 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Basso, C., Corrado, D., Marcus, F. I., Nava, A. & Thiene, G. Arrhythmogenic right ventricular cardiomyopathy. Lancet 373, 1289–1300 (2009).

    Article  PubMed  Google Scholar 

  26. Basso, C. et al. Ultrastructural evidence of intercalated disc remodelling in arrhythmogenic right ventricular cardiomyopathy: an electron microscopy investigation on endomyocardial biopsies. Eur. Heart J. 27, 1847–1854 (2006).

    Article  PubMed  Google Scholar 

  27. Pilichou, K. et al. Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. J. Exp. Med. 206, 1787–1802 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moncayo-Arlandi, J. et al. Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated PKP2 mouse model. Hum. Mol. Genet. 25, 3676–3688 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Schlipp, A. et al. Desmoglein-2 interaction is crucial for cardiomyocyte cohesion and function. Cardiovasc. Res. 104, 245–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Sato, P. Y. et al. Interactions between ankyrin-G, plakophilin-2, and connexin43 at the cardiac intercalated disc. Circ. Res. 109, 193–201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Tintelen, J. P. et al. Severe cardiac phenotype with right ventricular predominance in a large cohort of patients with a single missense mutation in the DES gene. Heart Rhythm 6, 1574–1583 (2009).

    Article  PubMed  Google Scholar 

  32. Li, J. et al. Loss of αT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia. J. Cell Sci. 125, 1058–1067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doetschman, T. et al. Transforming growth factor beta signaling in adult cardiovascular diseases and repair. Cell Tissue Res. 347, 203–223 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Beffagna, G. et al. Regulatory mutations in transforming growth factor-β3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc. Res. 65, 366–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Mayosi, B. M. et al. Identification of cadherin 2 (CDH2) mutations in arrhythmogenic right ventricular cardiomyopathy. Circ. Cardiovasc. Genet. 10, e001605 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Merner, N. D. et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am. J. Hum. Genet. 82, 809–821 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Der Zwaag, P. A. et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur. J. Heart Fail. 14, 1199–1207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Akdis, D. et al. Myocardial expression profiles of candidate molecules in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia compared to those with dilated cardiomyopathy and healthy controls. Heart Rhythm 13, 731–741 (2016).

    Article  PubMed  Google Scholar 

  39. Ortiz-Genga, M. F. et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J. Am. Coll. Cardiol. 68, 2440–2451 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Venetucci, L., Denegri, M., Napolitano, C. & Priori, S. G. Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nat. Rev. Cardiol. 9, 561–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Tiso, N. et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. Mol. Genet. 10, 189–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Campuzano, O. et al. Genetics and cardiac channelopathies. Genet. Med. 12, 260–267 (2010).

    Article  PubMed  Google Scholar 

  43. Gourraud, J.-B. et al. The Brugada syndrome: a rare arrhythmia disorder with complex inheritance. Front. Cardiovasc. Med. 3, 9 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kapplinger, J. D. et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 7, 33–46 (2010).

    Article  PubMed  Google Scholar 

  45. Tarradas, A. et al. A novel missense mutation, I890T, in the pore region of cardiac sodium channel causes Brugada syndrome. PLoS ONE 8, e53220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meregalli, P. G. et al. Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Heart Rhythm 6, 341–348 (2009).

    Article  PubMed  Google Scholar 

  47. Antzelevitch, C. et al. J-wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. J. Arrhythm. 32, 315–339 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wilde, A. A. M. & Brugada, R. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac sodium channel. Circ. Res. 108, 884–897 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Meregalli, P., Wilde, A. A. & Tan, H. Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more? Cardiovasc. Res. 67, 367–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Ishikawa, T. et al. Novel SCN3B mutation associated with Brugada syndrome affects intracellular trafficking and function of Nav1.5. Circ. J. 77, 959–967 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Riuró, H. et al. A missense mutation in the sodium channel β2 subunit reveals SCN2B as a new candidate gene for Brugada syndrome. Hum. Mutat. 34, 961–966 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Watanabe, H. et al. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J. Clin. Invest. 118, 2260–2268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu, D. et al. A mutation in the beta 3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype. Circ. Cardiovasc. Genet. 2, 270–278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qu, Y. et al. Differential modulation of sodium channel gating and persistent sodium currents by the beta1, beta2, and beta3 subunits. Mol. Cell. Neurosci. 18, 570–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Bezzina, C. R. et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 45, 1044–1049 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu, D. et al. Mutations in SCN10A are responsible for a large fraction of cases of brugada syndrome. J. Am. Coll. Cardiol. 64, 66–79 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van den Boogaard, M. et al. A common genetic variant within SCN10A modulates cardiac SCN5A expression. J. Clin. Invest. 124, 1844–1852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Behr, E. R. et al. Role of common and rare variants in SCN10A: results from the Brugada syndrome QRS locus gene discovery collaborative study. Cardiovasc. Res. 106, 520–529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. London, B. et al. Mutation in glycerol-3-phosphate dehydrogenase 1-like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation 116, 2260–2268 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kattygnarath, D. et al. MOG1: a new susceptibility gene for Brugada syndrome. Circ. Cardiovasc. Genet. 4, 261–268 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Ishikawa, T. et al. A novel disease gene for Brugada syndrome: sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5. Circ. Arrhythm. Electrophysiol. 5, 1098–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Le Scouarnec, S. et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for brugada syndrome. Hum. Mol. Genet. 24, 2757–2763 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Vite, A. & Radice, G. L. N-cadherin/catenin complex as a master regulator of intercalated disc function. Cell Commun. Adhes. 21, 169–179 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bass-Zubek, A. E., Godsel, L. M., Delmar, M. & Green, K. J. Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr. Opin. Cell Biol. 21, 708–716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pieperhoff, S. & Franke, W. W. The area composita of adhering junctions connecting heart muscle cells of vertebrates. VI. Different precursor structures in non-mammalian species. Eur. J. Cell Biol. 87, 413–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Swope, D., Li, J. & Radice, G. L. Beyond cell adhesion: the role of armadillo proteins in the heart. Cell. Signal. 25, 93–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Cowin, P., Kapprell, H.-P., Franke, W. W., Tamkun, J. & Hynes, R. O. Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell 46, 1063–1073 (1986).

    Article  CAS  PubMed  Google Scholar 

  68. Li, J. et al. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of β-catenin signaling. Mol. Cell. Biol. 31, 1134–1144 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Van Hengel, J. et al. Mutations in the area composita protein at-catenin are associated with arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 34, 201–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Verheule, S. & Kaese, S. Connexin diversity in the heart: Insights from transgenic mouse models. Front. Pharmacol. 4, 81 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Meyer, R. A., Laird, D. W., Revel, J. P. & Johnson, R. G. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell Biol. 119, 179–189 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128, 547–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rhett, J. M. & Gourdie, R. G. The perinexus: a new feature of Cx43 gap junction organization. Heart Rhythm 9, 619–623 (2012).

    Article  PubMed  Google Scholar 

  74. Rhett, J. M., Jourdan, J. & Gourdie, R. G. Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol. Biol. Cell 22, 1516–1528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hunter, A. W., Barker, R. J., Zhu, C. & Gourdie, R. G. Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol. Biol. Cell 16, 5686–5698 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gehmlich, K. et al. A novel desmocollin-2 mutation reveals insights into the molecular link between desmosomes and gap junctions. Heart Rhythm 8, 711–718 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Patel, D. M., Dubash, A. D., Kreitzer, G. & Green, K. J. Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions. J. Cell Biol. 206, 779–797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gomes, J. et al. Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin-A combined murine and human study. Eur. Heart J. 33, 1942–1953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lyon, R. C. et al. Connexin defects underlie arrhythmogenic right ventricular cardiomyopathy in a novel mouse model. Hum. Mol. Genet. 23, 1134–1150 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Agullo-Pascual, E. et al. Super-resolution fluorescencemicroscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. Cardiovasc. Res. 100, 231–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Makara, M. A. et al. Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo. Circ. Res. 115, 929–938 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shy, D., Gillet, L. & Abriel, H. Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model. Biochim. Biophys. Acta 1833, 886–894 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Lowe, J. S. et al. Voltage-gated Nav channel targeting in the heart requires an ankyrin-G–dependent cellular pathway. J. Cell Biol. 180, 173–186 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mohler, P. J. et al. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc. Natl Acad. Sci. USA 101, 17533–17538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cerrone, M. et al. Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency. Cardiovasc. Res. 95, 460–468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rhett, J. M., Ongstad, E. L., Jourdan, J. & Gourdie, R. G. Cx43 associates with Nav1.5 in the cardiomyocyte perinexus. J. Membr. Biol. 245, 411–422 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Veeraraghavan, R. et al. Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: an experimental and modeling study. Pflügers Arch. 467, 2093–2105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jansen, J. A. et al. Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm 9, 600–607 (2012).

    Article  PubMed  Google Scholar 

  89. Lübkemeier, I. et al. Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels. Basic Res. Cardiol. 108, 348 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Agullo-Pascual, E. et al. Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovasc. Res. 104, 371–381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leo-Macias, A. et al. Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nat. Commun. 7, 10342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dzhashiashvili, Y. et al. Nodes of Ranvier and axon initial segments are ankyrin G-dependent domains that assemble by distinct mechanisms. J. Cell Biol. 177, 857–870 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kostin, S., Hein, S., Bauer, E. P. & Schaper, J. Spatiotemporal development and distribution of intercellular junctions in adult rat cardiomyocytes in culture. Circ. Res. 85, 154–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Vreeker, A. et al. Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart. PLoS ONE 9, e94722 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Michels, C., Buchta, T., Bloch, W., Krieg, T. & Niessen, C. M. Classical cadherins regulate desmosome formation. J. Invest. Dermatol. 129, 2072–2075 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Kostetskii, I. et al. Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circ. Res. 96, 346–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Chen, S. N. et al. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ. Res. 114, 454–468 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Lewis, J. E. et al. Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J. Cell Biol. 136, 919–934 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Godsel, L. M. et al. Plakophilin 2 couples actomyosin remodeling to desmosomal plaque assembly via RhoA. Mol. Biol. Cell 21, 2844–2859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nekrasova, O. E. et al. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J. Cell Biol. 195, 1185–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nekrasova, O. & Green, K. J. Desmosome assembly and dynamics. Trends Cell Biol. 23, 537–546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bass-Zubek, A. E. et al. Plakophilin 2: a critical scaffold for PKCα that regulates intercellular junction assembly. J. Cell Biol. 181, 605–613 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grossmann, K. S. et al. Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J. Cell Biol. 167, 149–160 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Geisler, S. B. et al. Ordered assembly of the adhesive and electrochemical connections within newly formed Intercalated disks in primary cultures of adult rat cardiomyocytes. J. Biomed. Biotechnol. http://dx.doi.org/10.1155/2010/624719, (2010).

  105. Garcia-gras, E. et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhytmogenic right ventricular cardiomyopathy. J. Clin. Invest. 116, 2012–2021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lombardi, R. et al. Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ. Res. 104, 1076–1084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Marcus, F. I. et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur. Heart J. 31, 806–814 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chen, X., Bonné, S., Hatzfeld, M., Van Roy, F. & Green, K. J. Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and β-catenin signaling. J. Biol. Chem. 277, 10512–10522 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Gurha, P., Chen, X., Lombardi, R., Willerson, J. T. & Marian, A. Knock down of plakophilin 2 downregulates miR-184 through CpG hypermethylation and suppression of the E2F1 pathway and leads to enhanced adipogenesis in vitro. Circ. Res. 119, 731–750 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Matthes, S. A., Taffet, S. & Delmar, M. Plakophilin-2 and the migration, differentiation and transformation of cells derived from the epicardium of neonatal rat hearts. Cell Commun. Adhes. 18, 73–84 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sommariva, E. et al. Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy. Eur. Heart J. 57, 1835–1846 (2016).

    Article  Google Scholar 

  112. Codelia, V. A. & Irvine, K. D. Previews hippo signaling goes long range. Cell 150, 669–670 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Dubash, A. D. et al. Plakophilin-2 loss promotes TGF-β1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. J. Cell Biol. 212, 425–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bezzina, C. R. et al. Common sodium channel promoter haplotype in Asian subjects underlies variability in cardiac conduction. Circulation 113, 338–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. van den Boogaard, M. et al. Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J. Clin. Invest. 122, 2519–2530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tarradas, A. et al. Transcriptional regulation of the sodium channel gene (SCN5A) by GATA4 in human heart. J. Mol. Cell. Cardiol. 102, 74–82 (2016).

    Article  PubMed  CAS  Google Scholar 

  117. Yang, P., Kupershmidt, S. & Roden, D. M. Cloning and initial characterization of the human cardiac sodium channel (SCN5A) promoter. Cardiovasc. Res. 61, 56–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Daimi, H. et al. Regulation of SCN5A by microRNAs: miR-219 modulates SCN5A transcript expression and the effects of flecainide intoxication in mice. Heart Rhythm 12, 1333–1342 (2015).

    Article  PubMed  Google Scholar 

  119. Liang, W., Cho, H. C. & Marbán, E. Wnt signalling suppresses voltage-dependent Na+ channel expression in postnatal rat cardiomyocytes. J. Physiol. 593, 1147–1157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, N. et al. Activation of Wnt/beta-catenin signaling by hydrogen peroxide transcriptionally inhibits NaV1.5 expression. Free Radic. Biol. Med. 96, 34–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Thiene, G., Corrado, D. & Basso, C. Arrhythmogenic right ventricular cardiomyopathy/dysplasia. Orphanet J. Rare Dis. 2, 45 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Rizzo, S. et al. Intercalated disc abnormalities, reduced Na+ current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes. Cardiovasc. Res. 95, 409–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Kirchhof, P. et al. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation 114, 1799–1806 (2006).

    Article  PubMed  Google Scholar 

  124. Fabritz, L. et al. Load-reducing therapy prevents development of arrhythmogenic right ventricular cardiomyopathy in plakoglobin-deficient mice. J. Am. Coll. Cardiol. 57, 740–750 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Noorman, M. et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 10, 412–419 (2013).

    Article  PubMed  Google Scholar 

  126. Peters, S. Arrhythmogenic right ventricular dysplasia-cardiomyopathy and provocable coved-type ST-segment elevation in right precordial leads: clues from long-term follow-up. Europace 10, 816–820 (2008).

    Article  PubMed  Google Scholar 

  127. Peters, S. Is Brugada syndrome a variant of arrhythmogenic cardiomyopathy? Int. J. Cardiol. 189, 88–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mezzano, V. et al. Desmosomal junctions are necessary for adult sinus node function. Cardiovasc. Res. 111, 274–286 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Paul, M. et al. Connexin expression patterns in arrhythmogenic right ventricular cardiomyopathy. Am. J. Cardiol. 111, 1488–1495 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. van Hoorn, F. et al. Scn5a mutations in brugada syndrome are associated with increased cardiac dimensions and reduced contractility. PLoS ONE 7, e42037 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Maury, P. et al. Prevalence and prognostic role of various conduction disturbances in patients with the Brugada syndrome. Am. J. Cardiol. 112, 1384–1389 (2013).

    Article  PubMed  Google Scholar 

  133. Takagi, M. et al. Localized right ventricular morphological abnormalities detected by electron-beam computed tomography represent arrhythmogenic substrates in patients with the Brugada syndrome. Eur. Heart J. 22, 1032–1041 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Papavassiliu, T. et al. Spontaneous type 1 electrocardiographic pattern is associated with cardiovascular magnetic resonance imaging changes in Brugada syndrome. Heart Rhythm 7, 1790–1796 (2010).

    Article  PubMed  Google Scholar 

  135. Catalano, O. et al. Magnetic resonance investigations in Brugada syndrome reveal unexpectedly high rate of structural abnormalities. Eur. Heart J. 30, 2241–2248 (2009).

    Article  PubMed  Google Scholar 

  136. Papavassiliu, T. et al. Magnetic resonance imaging findings in patients with Brugada syndrome. J. Cardiovasc. Electrophysiol. 15, 1133–1138 (2004).

    Article  PubMed  Google Scholar 

  137. Derangeon, M., Montnach, J., Baró, I. & Charpentier, F. Mouse models of SCN5A-related cardiac arrhythmias. Front. Physiol. 3, 210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Watanabe, H. et al. Striking in vivo phenotype of a disease-associated human SCN5A mutation producing minimal changes in vitro. Circulation 124, 1001–1011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ohkubo, K. et al. Right ventricular histological substrate and conduction delay in patients with Brugada syndrome. Int. Heart J. 51, 17–23 (2010).

    Article  PubMed  Google Scholar 

  140. Zumhagen, S. et al. Absence of pathognomonic or inflammatory patterns in cardiac biopsies from patients with Brugada syndrome. Circ. Arrhythm. Electrophysiol. 2, 16–23 (2009).

    Article  PubMed  Google Scholar 

  141. Frustaci, A. et al. Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation 112, 3680–3687 (2005).

    Article  PubMed  Google Scholar 

  142. Pappone, C. et al. Electrical substrate elimination in 135 consecutive patients with Brugada syndrome. Circ. Arrhythm. Electrophysiol. 10, e005053 (2017).

    Article  PubMed  Google Scholar 

  143. Yi, B. A., Wernet, O. & Chien, K. R. Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration. J. Clin. Invest. 120, 20–28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Elizari, M. V. et al. Abnormal expression of cardiac neural crest cells in heart development: a different hypothesis for the etiopathogenesis of Brugada syndrome. Heart Rhythm 4, 359–365 (2007).

    Article  PubMed  Google Scholar 

  145. Boukens, B. J., Coronel, R. & Christoffels, V. M. Embryonic development of the right ventricular outflow tract and arrhythmias. Heart Rhythm 13, 616–622 (2016).

    Article  PubMed  Google Scholar 

  146. Boukens, B. J. D., Christoffels, V. M., Coronel, R. & Moorman, A. F. M. Developmental basis for electrophysiological heterogeneity in the ventricular and outflow tract myocardium as a substrate for life-threatening ventricular arrhythmias. Circ. Res. 104, 19–31 (2008).

    Article  CAS  Google Scholar 

  147. Boukens, B. J. et al. Reduced sodium channel function unmasks residual embryonic slow conduction in the adult right ventricular outflow tract. Circ. Res. 113, 137–141 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from Obra Social “la Caixa”, and Fundació Marató TV3-2014, Catalonia, Spain.

Author information

Authors and Affiliations

Authors

Contributions

J.M.-A. researched data for the article. Both authors discussed the content of the article, wrote the manuscript, and reviewed and edited it before submission.

Corresponding authors

Correspondence to Javier Moncayo-Arlandi or Ramon Brugada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moncayo-Arlandi, J., Brugada, R. Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nat Rev Cardiol 14, 744–756 (2017). https://doi.org/10.1038/nrcardio.2017.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing