Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell lineage and cell death: Caenorhabditis elegans and cancer research

A Corrigendum to this article was published on 01 March 2011

This article has been updated

Key Points

  • The invariant nature of the development of cell lineages in the nematode worm Caenorhabditis elegans has made it a useful model for understanding the mechanisms of cell lineage control and cell death.

  • Many of the genes that regulate cell death and lineage development have homologues in mammals.

  • Mapping cell lineage development in the nematode has been particularly informative for understanding the regulation of haematopoiesis in mammals, with many of the genes that regulate cell lineage being deregulated in leukaemia and lymphoma.

  • Further understanding of the regulation of cell fate in C. elegans and mammals should identify new targets for anticancer drug development.

Abstract

Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of programmed cell death in cell lineage.
Figure 2: The programmed cell death pathway of C. elegans is evolutionarily conserved.
Figure 3: Cell death is specified by transcription factors in C. elegans, and their human homologues are oncogenes.

Similar content being viewed by others

Change history

  • 26 February 2011

    This has been corrected on both html and pdf versions.

References

  1. White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986). The discovery of ced-3 and ced-4 revealed for the first time the genetic control of programmed cell death.

  3. Yin, C., Knudson, C. M., Korsmeyer, S. J. & Van Dyke, T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385, 637–640 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983). This and reference 4 began the technical and scientific milestone of defining the C. elegans lineages.

    Article  CAS  PubMed  Google Scholar 

  6. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zarkower, D. Somatic sex determination. WormBook, [online], (2007).

    Google Scholar 

  8. Cameron, S., Clark, S. G., McDermott, J. B., Aamodt, E. & Horvitz, H. R. PAG-3, a Zn-finger transcription factor, determines neuroblast fate in C. elegans. Development 129, 1763–1774 (2002).

    CAS  PubMed  Google Scholar 

  9. Jia, Y., Xie, G., McDermott, J. B. & Aamodt, E. The C. elegans gene pag-3 is homologous to the zinc finger proto-oncogene gfi-1. Development 124, 2063–2073 (1997).

    CAS  PubMed  Google Scholar 

  10. Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431, 1002–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Hock, H. et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18, 109–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Saleque, S., Cameron, S. & Orkin, S. H. The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev. 16, 301–306 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, M. et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 1, 541–554 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 β-converting enzyme. Cell 75, 641–652 (1993). The discovery that proteases now known as caspases were required for programmed cell death.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan, J. Y. & Horvitz, H. R. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev. Biol. 138, 33–41 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Conradt, B. & Horvitz, H. R. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98, 317–327 (1999). The discovery of the mechanism through which cell death decisions are controlled for somatic cells.

    Article  CAS  PubMed  Google Scholar 

  19. Conradt, B. & Horvitz, H. R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Horvitz, H. R. Worms, life, and death (Nobel lecture). Chembiochem 4, 697–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Vaux, D. L., Weissman, I. L. & Kim, S. K. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Zinkel, S. S. et al. Proapoptotic BID is required for myeloid homeostasis and tumor suppression. Genes Dev. 17, 229–239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ranger, A. M. et al. Bad-deficient mice develop diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA 100, 9324–9329 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yan, N. et al. Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 437, 831–837 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Oberst, A., Bender, C. & Green, D. R. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ. 15, 1139–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Orme, M. & Meier, P. Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis 14, 950–960 (2009).

    Article  PubMed  Google Scholar 

  30. Goyal, L. Cell death inhibition: keeping caspases in check. Cell 104, 805–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Maurer, C. W., Chiorazzi, M. & Shaham, S. Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. Development 134, 1357–1368 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Park, D., Jia, H., Rajakumar, V. & Chamberlin, H. M. Pax2/5/8 proteins promote cell survival in C. elegans. Development 133, 4193–4202 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Nehme, R. et al. Transcriptional upregulation of both egl-1 BH3-only and ced-3 caspase is required for the death of the male-specific CEM neurons. Cell Death Differ. 17, 1266–1276 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Ellis, R. E. & Horvitz, H. R. Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112, 591–603 (1991).

    CAS  PubMed  Google Scholar 

  35. Metzstein, M. M., Hengartner, M. O., Tsung, N., Ellis, R. E. & Horvitz, H. R. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature 382, 545–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Metzstein, M. M. & Horvitz, H. R. The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol. Cell 4, 309–319 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Thellmann, M., Hatzold, J. & Conradt, B. The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 130, 4057–4071 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Inaba, T. et al. Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature 382, 541–544 (1996). Together with reference 35, this paper demonstrated that the mechanisms that decide whether individual cells survive or die are conserved and abnormal in human cancers.

    Article  CAS  PubMed  Google Scholar 

  39. Inaba, T. et al. Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 257, 531–534 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Hunger, S. P. et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 77, 687–693 (1991).

    CAS  PubMed  Google Scholar 

  41. Hemavathy, K., Guru, S. C., Harris, J., Chen, J. D. & Ip, Y. T. Human Slug is a repressor that localizes to sites of active transcription. Mol. Cell. Biol. 20, 5087–5095 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Inukai, T. et al. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol. Cell 4, 343–352 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, W. S. et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123, 641–653 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hatzold, J. & Conradt, B. Control of apoptosis by asymmetric cell division. PLoS Biol. 6, e84 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Buchman, J. J. & Tsai, L. H. Spindle regulation in neural precursors of flies and mammals. Nature Rev. Neurosci. 8, 89–100 (2007).

    Article  CAS  Google Scholar 

  46. Neumuller, R. A. & Knoblich, J. A. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 23, 2675–2699 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ellis, R. & Schedl, T. Sex determination in the germ line. WormBook, [online], (2007).

    Google Scholar 

  48. Hodgkin, J. A. & Brenner, S. Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics 86, 275–287 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Peden, E., Kimberly, E., Gengyo-Ando, K., Mitani, S. & Xue, D. Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. Genes Dev. 21, 3195–3207 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schwartz, H. T. & Horvitz, H. R. The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9. Genes Dev. 21, 3181–3194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Collum, R. G. et al. A novel POU homeodomain gene specifically expressed in cells of the developing mammalian nervous system. Nucleic Acids Res. 20, 4919–4925 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gidekel, S., Pizov, G., Bergman, Y. & Pikarsky, E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4, 361–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Budhram-Mahadeo, V. S. & Latchman, D. S. Targeting Brn-3b in breast cancer therapy. Expert Opin. Ther. Targets 10, 15–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Eisen, T., Easty, D. J., Bennett, D. C. & Goding, C. R. The POU domain transcription factor Brn-2: elevated expression in malignant melanoma and regulation of melanocyte-specific gene expression. Oncogene 11, 2157–2164 (1995).

    CAS  PubMed  Google Scholar 

  55. Shin, S. H. et al. Implication of leucyl-tRNA synthetase 1 (LARS1) over-expression in growth and migration of lung cancer cells detected by siRNA targeted knock-down analysis. Exp. Mol. Med. 40, 229–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Buscarlet, M. & Stifani, S. The 'Marx' of Groucho on development and disease. Trends Cell Biol. 17, 353–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Shah, N. et al. Potential roles for the PIM1 kinase in human cancer - a molecular and therapeutic appraisal. Eur. J. Cancer 44, 2144–2151 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Zarkower, D. & Hodgkin, J. Molecular analysis of the C. elegans sex-determining gene tra-1: a gene encoding two zinc finger proteins. Cell 70, 237–249 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Dierks, C. et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nature Med. 13, 944–951 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Regl, G. et al. Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res. 64, 7724–7731 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Bigelow, R. L. et al. Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J. Biol. Chem. 279, 1197–1205 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Hirose, T., Galvin, B. D. & Horvitz, H. R. Six and Eya promote apoptosis through direct transcriptional activation of the proapoptotic BH3-only gene egl-1 in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 107, 15479–15484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Christensen, K. L., Patrick, A. N., McCoy, E. L. & Ford, H. L. The six family of homeobox genes in development and cancer. Adv. Cancer Res. 101, 93–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Clark, S. G., Chisholm, A. D. & Horvitz, H. R. Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell 74, 43–55 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Salser, S. J., Loer, C. M. & Kenyon, C. Multiple HOM-C gene interactions specify cell fates in the nematode central nervous system. Genes Dev. 7, 1714–1724 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Kenyon, C. A gene involved in the development of the posterior body region of C. elegans. Cell 46, 477–487 (1986).

    Article  CAS  PubMed  Google Scholar 

  68. Ferreira, H. B., Zhang, Y., Zhao, C. & Emmons, S. W. Patterning of Caenorhabditis elegans posterior structures by the Abdominal-B homolog, egl-5. Dev. Biol. 207, 215–228 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Chisholm, A. Control of cell fate in the tail region of C. elegans by the gene egl-5. Development 111, 921–932 (1991).

    CAS  PubMed  Google Scholar 

  70. Brunschwig, K. et al. Anterior organization of the Caenorhabditis elegans embryo by the labial-like Hox gene ceh-13. Development 126, 1537–1546 (1999).

    CAS  PubMed  Google Scholar 

  71. Aboobaker, A. & Blaxter, M. Hox gene evolution in nematodes: novelty conserved. Curr. Opin. Genet. Dev. 13, 593–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Chan, S. K., Jaffe, L., Capovilla, M., Botas, J. & Mann, R. S. The DNA binding specificity of ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell 78, 603–615 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, J. & Fire, A. Overlapping roles of two Hox genes and the exd ortholog ceh-20 in diversification of the C. elegans postembryonic mesoderm. Development 127, 5179–5190 (2000).

    CAS  PubMed  Google Scholar 

  74. Liu, H., Strauss, T. J., Potts, M. B. & Cameron, S. Direct regulation of egl-1 and of programmed cell death by the Hox protein MAB-5 and by CEH-20, a C. elegans homolog of Pbx1. Development 133, 641–650 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Yang, L., Sym, M. & Kenyon, C. The roles of two C. elegans HOX co-factor orthologs in cell migration and vulva development. Development 132, 1413–1428 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Streit, A. et al. Conserved regulation of the Caenorhabditis elegans labial/Hox1 gene ceh-13. Dev. Biol. 242, 96–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Van Auken, K. et al. Roles of the Homothorax/Meis/Prep homolog UNC-62 and the Exd/Pbx homologs CEH-20 and CEH-40 in C. elegans embryogenesis. Development 129, 5255–5268 (2002).

    CAS  PubMed  Google Scholar 

  78. Moens, C. B. & Selleri, L. Hox cofactors in vertebrate development. Dev. Biol. 291, 193–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Potts, M. B., Wang, D. P. & Cameron, S. Trithorax, Hox, and TALE-class homeodomain proteins ensure cell survival through repression of the BH3-only gene egl-1. Dev. Biol. 329, 374–385 (2009). This paper and references 65 and 74 describe the biology and mechanism of Hox regulation of cell death.

    Article  CAS  PubMed  Google Scholar 

  80. Lohmann, I., McGinnis, N., Bodmer, M. & McGinnis, W. The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 110, 457–466 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Rogulja-Ortmann, A., Renner, S. & Technau, G. M. Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryonic central nervous system. Development 135, 3435–3445 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Faber, J. et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113, 2375–2385 (2008).

    Article  PubMed  Google Scholar 

  83. Bernasconi, M., Remppis, A., Fredericks, W. J., Rauscher, F. J. & Schafer, B. W. Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc. Natl Acad. Sci. USA 93, 13164–13169 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Busslinger, M., Klix, N., Pfeffer, P., Graninger, P. G. & Kozmik, Z. Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc. Natl Acad. Sci. USA 93, 6129–6134 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Davis, R. J. et al. Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma. Hum. Mol. Genet. 4, 2355–2362 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Epstein, J., Cai, J., Glaser, T., Jepeal, L. & Maas, R. Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformational changes. J. Biol. Chem. 269, 8355–8361 (1994).

    CAS  PubMed  Google Scholar 

  87. Fredericks, W. J. et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol. Cell. Biol. 15, 1522–1535 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shapiro, D. N., Sublett, J. E., Li, B., Downing, J. R. & Naeve, C. W. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 53, 5108–5112 (1993).

    CAS  PubMed  Google Scholar 

  89. Muratovska, A., Zhou, C., He, S., Goodyer, P. & Eccles, M. R. Paired-Box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 22, 7989–7997 (2003).

    Article  PubMed  CAS  Google Scholar 

  90. Margue, C. M., Bernasconi, M., Barr, F. G. & Schafer, B. W. Transcriptional modulation of the anti-apoptotic protein BCL-XL by the paired box transcription factors PAX3 and PAX3/FKHR. Oncogene 19, 2921–2929 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R. & Hengartner, M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022 (1999).

    CAS  PubMed  Google Scholar 

  92. Schertel, C. & Conradt, B. C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions. Development 134, 3691–3701 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Stergiou, L. & Hengartner, M. O. Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ. 11, 21–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Sendoel, A., Kohler, I., Fellmann, C., Lowe, S. W. & Hengartner, M. O. HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature 465, 577–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Reddien, P. W., Andersen, E. C., Huang, M. C. & Horvitz, H. R. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans. Genetics 175, 1719–1733 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Rowley, J. D. The role of chromosome translocations in leukemogenesis. Semin. Hematol. 36, 59–72 (1999).

    CAS  PubMed  Google Scholar 

  98. Ernst, P., Wang, J. & Korsmeyer, S. J. The role of MLL in hematopoiesis and leukemia. Curr. Opin. Hematol. 9, 282–287 (2002).

    Article  PubMed  Google Scholar 

  99. Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nature Rev. Cancer 7, 823–833 (2007).

    Article  CAS  Google Scholar 

  100. Armstrong, S. A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genet. 30, 41–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Grimwade, D. et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 92, 2322–2333 (1998).

    CAS  PubMed  Google Scholar 

  102. Moorman, A. V. et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 109, 3189–3197 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Biondi, A., Cimino, G., Pieters, R. & Pui, C. H. Biological and therapeutic aspects of infant leukemia. Blood 96, 24–33 (2000).

    CAS  PubMed  Google Scholar 

  104. Pui, C. H., Relling, M. V. & Downing, J. R. Acute lymphoblastic leukemia. N. Engl. J. Med. 350, 1535–1548 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Mancini, M. et al. A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood 105, 3434–3441 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Bijl, J. et al. Analysis of HSC activity and compensatory Hox gene expression profile in Hoxb cluster mutant fetal liver cells. Blood 108, 116–122 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lawrence, H. J. et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 89, 1922–1930 (1997).

    CAS  PubMed  Google Scholar 

  108. Ko, K. H. et al. Hoxb3 deficiency impairs B lymphopoiesis in mouse bone marrow. Exp. Hematol. 35, 465–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Magnusson, M., Brun, A. C., Lawrence, H. J. & Karlsson, S. Hoxa9/hoxb3/hoxb4 compound null mice display severe hematopoietic defects. Exp. Hematol. 35, 1421–1428 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Brun, A. C. et al. Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood 103, 4126–4133 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Wong, P., Iwasaki, M., Somervaille, T. C., So, C. W. & Cleary, M. L. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev. 21, 2762–2774 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Somervaille, T. C. & Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10, 257–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Kumar, A. R. et al. Hoxa9 influences the phenotype but not the incidence of Mll-AF9 fusion gene leukemia. Blood 103, 1823–1828 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Ayton, P. M. & Cleary, M. L. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 17, 2298–2307 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schnabel, C. A., Jacobs, Y. & Cleary, M. L. HoxA9-mediated immortalization of myeloid progenitors requires functional interactions with TALE cofactors Pbx and Meis. Oncogene 19, 608–616 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Hunger, S. P., Ohyashiki, K., Toyama, K. & Cleary, M. L. Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev. 6, 1608–1620 (1992).

    Article  CAS  PubMed  Google Scholar 

  118. Seidel, M. G. & Look, A. T. E2A-HLF usurps control of evolutionarily conserved survival pathways. Oncogene 20, 5718–5725 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Beachy, P. A., Karhadkar, S. S. & Berman, D. M. Tissue repair and stem cell renewal in carcinogenesis. Nature 432, 324–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Curran, T. & Ng, J. M. Cancer: Hedgehog's other great trick. Nature 455, 293–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Eklund, E. A. The role of HOX genes in malignant myeloid disease. Curr. Opin. Hematol. 14, 85–89 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Argiropoulos, B., Yung, E. & Humphries, R. K. Unraveling the crucial roles of Meis1 in leukemogenesis and normal hematopoiesis. Genes Dev. 21, 2845–2849 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Abramovich, C. & Humphries, R. K. Hox regulation of normal and leukemic hematopoietic stem cells. Curr. Opin. Hematol. 12, 210–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Grier, D. G. et al. The pathophysiology of HOX genes and their role in cancer. J. Pathol. 205, 154–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Mercado, G. E. & Barr, F. G. Fusions involving PAX and FOX genes in the molecular pathogenesis of alveolar rhabdomyosarcoma: recent advances. Curr. Mol. Med. 7, 47–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Colleypriest, B. J., Palmer, R. M., Ward, S. G. & Tosh, D. Cdx genes, inflammation and the pathogenesis of Barrett's metaplasia. Trends Mol. Med. 15, 313–322 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Bansal, D. et al. Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc. Natl Acad. Sci. USA 103, 16924–16929 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  128. Guo, R. J., Suh, E. R. & Lynch, J. P. The role of Cdx proteins in intestinal development and cancer. Cancer Biol. Ther. 3, 593–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Bany, I. A., Dong, M. Q. & Koelle, M. R. Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. J. Neurosci. 23, 8060–8069 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Matt Porteus, Jim Amatruda, John Abrams and Bob Horvitz for their contributions to the manuscript. S.C. would also like to particularly thank Matt and Jim for their friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Cameron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

WormAtlas

Wormbase

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potts, M., Cameron, S. Cell lineage and cell death: Caenorhabditis elegans and cancer research. Nat Rev Cancer 11, 50–58 (2011). https://doi.org/10.1038/nrc2984

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2984

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer