Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Depletion of mitochondria in mammalian cells through enforced mitophagy

Abstract

Mitochondria are not only the 'powerhouse' of the cell; they are also involved in a multitude of processes that include calcium storage, the cell cycle and cell death. Traditional means of investigating mitochondrial importance in a given cellular process have centered upon depletion of mtDNA through chemical or genetic means. Although these methods severely disrupt the mitochondrial electron transport chain, mtDNA-depleted cells still maintain mitochondria and many mitochondrial functions. Here we describe a straightforward protocol to generate mammalian cell populations with low to nondetectable levels of mitochondria. Ectopic expression of the ubiquitin E3 ligase Parkin, combined with short-term mitochondrial uncoupler treatment, stimulates widespread mitophagy and effectively eliminates mitochondria. In this protocol, we explain how to generate Parkin-expressing, mitochondria-depleted cells from scratch in 23 d, as well as offer a variety of methods for confirming mitochondrial clearance. Furthermore, we describe culture conditions to maintain mitochondrial-depleted cells for up to 30 d with minimal loss of viability, for longitudinal studies. This method should prove useful for investigating the importance of mitochondria in a variety of biological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of enforced mitophagy protocol.
Figure 2: Validating widespread Parkin-mediated mitophagy.

Similar content being viewed by others

References

  1. Chandel, N.S. Mitochondria as signaling organelles. BMC Biol. 12, 34 (2014).

    Article  Google Scholar 

  2. Pickrell, A.M. & Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257–273 (2015).

    Article  CAS  Google Scholar 

  3. Dorn, G.W. II, Vega, R.B. & Kelly, D.P. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 29, 1981–1991 (2015).

    Article  CAS  Google Scholar 

  4. Youle, R.J. & Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article  CAS  Google Scholar 

  5. Quiros, P.M., Langer, T. & Lopez-Otin, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 16, 345–359 (2015).

    Article  CAS  Google Scholar 

  6. Riley, J.S. & Tait, S.W. Mechanisms of mitophagy: putting the powerhouse into the doghouse. Biol. Chem. 397, 617–635 (2016).

    Article  CAS  Google Scholar 

  7. Jin, S.M. et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933–942 (2010).

    Article  CAS  Google Scholar 

  8. Yamano, K. & Youle, R.J. PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758–1769 (2013).

    Article  CAS  Google Scholar 

  9. Kane, L.A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153 (2014).

    Article  CAS  Google Scholar 

  10. Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166 (2014).

    Article  CAS  Google Scholar 

  11. Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127–139 (2014).

    Article  CAS  Google Scholar 

  12. Chen, Y. & Dorn, G.W. II. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475 (2013).

    Article  CAS  Google Scholar 

  13. Gong, G. et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, aad2459 (2015).

    Article  Google Scholar 

  14. Narendra, D., Tanaka, A., Suen, D.-F. & Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  CAS  Google Scholar 

  15. Tait, S.W. et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 5, 878–885 (2013).

    Article  CAS  Google Scholar 

  16. Correia-Melo, C. et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 35, 724–742 (2016).

    Article  CAS  Google Scholar 

  17. King, M.P. & Attardi, G. Isolation of human cell lines lacking mitochondrial DNA. Methods Enzymol. 264, 304–313 (1996).

    Article  CAS  Google Scholar 

  18. Kukat, A. et al. Generation of rho0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses. Nucleic Acids Res. 36, e44 (2008).

    Article  Google Scholar 

  19. Jazayeri, M. et al. Inducible expression of a dominant negative DNA polymerase-gamma depletes mitochondrial DNA and produces a rho0 phenotype. J. Biol. Chem. 278, 9823–9830 (2003).

    Article  CAS  Google Scholar 

  20. Jacobson, M.D. et al. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 361, 365–369 (1993).

    Article  CAS  Google Scholar 

  21. Tait, S.W. & Green, D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  Google Scholar 

  22. Tait, S.W., Ichim, G. & Green, D.R. Die another way—non-apoptotic mechanisms of cell death. J. Cell Sci. 127, 2135–2144 (2014).

    Article  CAS  Google Scholar 

  23. Kim, Y.S., Morgan, M.J., Choksi, S. & Liu, Z.G. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26, 675–687 (2007).

    Article  CAS  Google Scholar 

  24. Vanlangenakker, N. et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 18, 656–665 (2011).

    Article  CAS  Google Scholar 

  25. Cho, Y.S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  Google Scholar 

  26. van Deursen, J.M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  CAS  Google Scholar 

  27. Correia-Melo, C. & Passos, J.F. Mitochondria: are they causal players in cellular senescence? Biochim. Biophys. Acta 1847, 1373–1379 (2015).

    Article  CAS  Google Scholar 

  28. Passos, J.F. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347 (2010).

    Article  Google Scholar 

  29. Metcalf, D.J., Garcia-Arencibia, M., Hochfeld, W.E. & Rubinsztein, D.C. Autophagy and misfolded proteins in neurodegeneration. Exp. Neurol. 238, 22–28 (2012).

    Article  CAS  Google Scholar 

  30. Rosenfeldt, M.T. & Ryan, K.M. The multiple roles of autophagy in cancer. Carcinogenesis 32, 955–963 (2011).

    Article  CAS  Google Scholar 

  31. Baudot, A.D., Haller, M., Mrschtik, M., Tait, S.W. & Ryan, K.M. Using enhanced-mitophagy to measure autophagic flux. Methods 75, 105–111 (2015).

    Article  CAS  Google Scholar 

  32. Padman, B.S., Bach, M., Lucarelli, G., Prescott, M. & Ramm, G. The protonophore CCCP interferes with lysosomal degradation of autophagic cargo in yeast and mammalian cells. Autophagy 9, 1862–1875 (2013).

    Article  CAS  Google Scholar 

  33. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  Google Scholar 

  34. Swift, S., Lorens, J., Achacoso, P. & Nolan, G.P. Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. Current Protocols in Immunology (eds. Coligan J.E. et al.) Chapter 10 Unit 10.17C, http://dx.doi.org/10.1002/0471142735.im1017cs31 (2001).

  35. Hayflick, L. & Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  Google Scholar 

  36. Minamikawa, T., Williams, D.A., Bowser, D.N. & Nagley, P. Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells. Exp. Cell Res. 246, 26–37 (1999).

    Article  CAS  Google Scholar 

  37. Yoshii, S.R., Kishi, C., Ishihara, N. & Mizushima, N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286, 19630–19640 (2011).

    Article  CAS  Google Scholar 

  38. Chan, N.C. et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726–1737 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Long and K. Ryan (Cancer Research UK Beatson Institute, Glasgow, United Kingdom) for providing KP-4 cells expressing Parkin. We thank G.P. Nolan (Stanford University, Stanford, California, USA) for providing the pLZRS-empty vector plasmid. C.C.-M. was funded by Newcastle University and the Foundation for Science and Technology (FCT) through the GABBA Programme, University of Porto, Porto, Portugal. G.I. was supported by an EMBO advanced long-term postdoctoral fellowship (aALTF 772–2015). This research was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) (grant BB/K008374/1) and the Royal Society (both to S.W.G.T.). S.W.G.T. is a Royal Society University Research Fellow. Work in the J.F.P. laboratory was funded by a David Phillips Fellowship (BB/H022384/1) and a (BBSRC grant BB/K017314/1). We thank C. Winchester (Beaston Institute, Glasgow, Scotland) for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.C.-M., G.I., S.W.G.T. and J.F.P. developed the protocol. C.C.-M., G.I., S.W.G.T. and J.F.P. designed the experiments described herein. G.I. and C.C.-M. performed the experiments, interpreted the results and prepared figures. C.C.-M., G.I., S.W.G.T. and J.F.P. wrote the manuscript.

Corresponding authors

Correspondence to Stephen W G Tait or João F Passos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia-Melo, C., Ichim, G., Tait, S. et al. Depletion of mitochondria in mammalian cells through enforced mitophagy. Nat Protoc 12, 183–194 (2017). https://doi.org/10.1038/nprot.2016.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.159

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing