Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A cell-free organelle-based in vitro system for studying the peroxisomal protein import machinery

Abstract

Here we describe a protocol to dissect the peroxisomal matrix protein import pathway using a cell-free in vitro system. The system relies on a postnuclear supernatant (PNS), which is prepared from rat/mouse liver, to act as a source of peroxisomes and cytosolic components. A typical in vitro assay comprises the following steps: (i) incubation of the PNS with an in vitro–synthesized 35S-labeled reporter protein; (ii) treatment of the organelle suspension with a protease that degrades reporter proteins that have not associated with peroxisomes; and (iii) SDS–PAGE/autoradiography analysis. To study transport of proteins into peroxisomes, it is possible to use organelle-resident proteins that contain a peroxisomal targeting signal (PTS) as reporters in the assay. In addition, a receptor (PEX5L/S or PEX5L.PEX7) can be used to report the dynamics of shuttling proteins that mediate the import process. Thus, different but complementary perspectives on the mechanism of this pathway can be obtained. We also describe strategies to fortify the system with recombinant proteins to increase import yields and block specific parts of the machinery at a number of steps. The system recapitulates all the steps of the pathway, including mono-ubiquitination of PEX5L/S at the peroxisome membrane and its ATP-dependent export back into the cytosol by PEX1/PEX6. An in vitro import(/export) experiment can be completed in 24 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PEX5-mediated protein import pathway.
Figure 2: Receptor- and cargo-centered in vitro import assays.

Similar content being viewed by others

References

  1. Vögtle, F.-N. et al. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139, 428–439 (2009).

    Article  Google Scholar 

  2. Karamyshev, A.L. et al. Inefficient SRP interaction with a nascent chain triggers a mRNA quality control pathway. Cell 156, 146–157 (2014).

    Article  CAS  Google Scholar 

  3. Rodrigues, T.A. et al. A PEX7-centered perspective on the peroxisomal targeting signal type 2-mediated protein import pathway. Mol. Cell. Biol. 34, 2917–2928 (2014).

    Article  Google Scholar 

  4. Paila, Y.D. et al. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. Elife 5 (2016).

  5. Miura, S., Miyazawa, S., Osumi, T., Hashimoto, T. & Fujiki, Y. Post-translational import of 3-ketoacyl-CoA thiolase into rat liver peroxisomes. J. Biochem. 115, 1064–1068 (1994).

    Article  CAS  Google Scholar 

  6. Small, G.M., Imanaka, T., Shio, H. & Lazarow, P.B. Efficient association of in vitro translation products with purified stable Candida tropicalis peroxisomes. Mol. Cell. Biol. 7, 1848–1855 (1987).

    Article  CAS  Google Scholar 

  7. Thieringer, R., Shio, H., Han, Y.S., Cohen, G. & Lazarow, P.B. Peroxisomes in Saccharomyces cerevisiae: immunofluorescence analysis and import of catalase A into isolated peroxisomes. Mol. Cell. Biol. 11, 510–522 (1991).

    Article  CAS  Google Scholar 

  8. Brickner, D.G., Harada, J.J. & Olsen, L.J. Protein transport into higher plant peroxisomes. In vitro import assay provides evidence for receptor involvement. Plant Physiol. 113, 1213–1221 (1997).

    Article  CAS  Google Scholar 

  9. Brickner, D.G. & Olsen, L.J. Nucleotide triphosphates are required for the transport of glycolate oxidase into peroxisomes. Plant Physiol. 116, 309–317 (1998).

    Article  CAS  Google Scholar 

  10. Grou, C.P. et al. The peroxisomal protein import machinery - a case report of transient ubiquitination with a new flavor. Cell. Mol. Life Sci. 66, 254–262 (2009).

    Article  CAS  Google Scholar 

  11. Kim, P.K. & Hettema, E.H. Multiple pathways for protein transport to peroxisomes. J. Mol. Biol. 427, 1176–1190 (2015).

    Article  CAS  Google Scholar 

  12. Baker, A. & Paudyal, R. The life of the peroxisome: from birth to death. Curr. Opin. Plant Biol. 22, 39–47 (2014).

    Article  CAS  Google Scholar 

  13. Rodrigues, T.A., Grou, C.P. & Azevedo, J.E. Revisiting the intraperoxisomal pathway of mammalian PEX7. Sci. Rep. 5, 11806 (2015).

    Article  Google Scholar 

  14. Freitas, M.O. et al. The peroxisomal protein import machinery displays a preference for monomeric substrates. Open Biol. 5, 140236 (2015).

    Article  Google Scholar 

  15. Alexson, S.E.H., Fujiki, Y., Shio, H. & Lazarow, P.B. Partial disassembly of peroxisomes. J. Cell Biol. 101, 294–305 (1985).

    Article  CAS  Google Scholar 

  16. Brocard, C. & Hartig, A. Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim. Biophys. Acta 1763, 1565–1573 (2006).

    Article  CAS  Google Scholar 

  17. Oliveira, M.E., Gouveia, A.M., Pinto, R.A., Sá-Miranda, C. & Azevedo, J.E. The energetics of Pex5p-mediated peroxisomal protein import. J. Biol. Chem. 278, 39483–39488 (2003).

    Article  CAS  Google Scholar 

  18. Gouveia, A.M. et al. Characterization of the peroxisomal cycling receptor, Pex5p, using a cell-free in vitro import system. J. Biol. Chem. 278, 226–232 (2003).

    Article  CAS  Google Scholar 

  19. Gouveia, A.M., Guimarães, C.P., Oliveira, M.E., Sá-Miranda, C. & Azevedo, J.E. Insertion of Pex5p into the peroxisomal membrane is cargo protein-dependent. J. Biol. Chem. 278, 4389–4392 (2003).

    Article  CAS  Google Scholar 

  20. Gouveia, A.M., Reguenga, C., Oliveira, M.E., Sa-Miranda, C. & Azevedo, J.E. Characterization of peroxisomal Pex5p from rat liver. Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J. Biol. Chem. 275, 32444–32451 (2000).

    Article  CAS  Google Scholar 

  21. Carvalho, A.F. et al. Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J. Biol. Chem. 282, 31267–31272 (2007).

    Article  CAS  Google Scholar 

  22. Miyata, N. & Fujiki, Y. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol. Cell. Biol. 25, 10822–10832 (2005).

    Article  CAS  Google Scholar 

  23. Grou, C.P. et al. Properties of the ubiquitin-pex5p thiol ester conjugate. J. Biol. Chem. 284, 10504–10513 (2009).

    Article  CAS  Google Scholar 

  24. Bhogal, M.S., Lanyon-Hogg, T., Johnston, K.A., Warriner, S.L. & Baker, A. Covalent label transfer between peroxisomal importomer components reveals export-driven import interactions. J. Biol. Chem. 291, 2460–2468 (2016).

    Article  CAS  Google Scholar 

  25. Platta, H.W., Grunau, S., Rosenkranz, K., Girzalsky, W. & Erdmann, R. Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat. Cell Biol. 7, 817–822 (2005).

    Article  CAS  Google Scholar 

  26. Alencastre, I.S. et al. Mapping the cargo protein membrane translocation step into the PEX5 cycling pathway. J. Biol. Chem. 284, 27243–27251 (2009).

    Article  CAS  Google Scholar 

  27. Francisco, T. et al. A cargo-centered perspective on the PEX5-mediated peroxisomal protein import pathway. J. Biol. Chem. 288, 29151–29159 (2013).

    Article  CAS  Google Scholar 

  28. Williams, C.P. et al. The Peroxisomal Targeting Signal 1 in sterol carrier protein 2 is autonomous and essential for receptor recognition. BMC Biochem. 12, 12 (2011).

    Article  CAS  Google Scholar 

  29. Williams, C., van den Berg, M., Sprenger, R.R. & Distel, B. A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J. Biol. Chem. 282, 22534–22543 (2007).

    Article  CAS  Google Scholar 

  30. Grou, C.P. et al. Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on the ubiquitin-peroxin 5 (PEX5) thioester conjugate. J. Biol. Chem. 287, 12815–12827 (2012).

    Article  CAS  Google Scholar 

  31. Debelyy, M.O. et al. Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. J. Biol. Chem. 286, 28223–28234 (2011).

    Article  CAS  Google Scholar 

  32. Leighton, F., Poole, B., Lazarow, P.B. & De Duve, C. The synthesis and turnover of rat liver peroxisomes. I. Fractionation of peroxisome proteins. J. Cell Biol. 41, 521–535 (1969).

    Article  CAS  Google Scholar 

  33. Grou, C.P. et al. Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J. Biol. Chem. 283, 14190–14197 (2008).

    Article  CAS  Google Scholar 

  34. Okumoto, K. et al. Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic 12, 1067–1083 (2011).

    Article  CAS  Google Scholar 

  35. Wendland, M. & Subramani, S. Cytosol-dependent peroxisomal protein import in a permeabilized cell system. J. Cell Biol. 120, 675–685 (1993).

    Article  CAS  Google Scholar 

  36. Koepke, J.I. et al. Restoration of peroxisomal catalase import in a model of human cellular aging. Traffic 8, 1590–1600 (2007).

    Article  CAS  Google Scholar 

  37. Terlecky, S.R., Legakis, J.E., Hueni, S.E. & Subramani, S. Quantitative analysis of peroxisomal protein import. Exp. Cell Res. 263, 98–106 (2001).

    Article  CAS  Google Scholar 

  38. Pinto, M.P. et al. The import competence of a peroxisomal membrane protein is determined by Pex19p before the docking step. J. Biol. Chem. 281, 34492–34502 (2006).

    Article  CAS  Google Scholar 

  39. Ghosh, D. & Berg, J.M. A proteome-wide perspective on peroxisome targeting signal 1(PTS1)-Pex5p affinities. J. Am. Chem. Soc. 132, 3973–3979 (2010).

    Article  CAS  Google Scholar 

  40. Miyata, N., Okumoto, K., Mukai, S., Noguchi, M. & Fujiki, Y. AWP1/ZFAND6 functions in Pex5 export by interacting with cys-monoubiquitinated Pex5 and Pex6 AAA ATPase. Traffic 13, 168–183 (2012).

    Article  CAS  Google Scholar 

  41. Croes, K., Foulon, V., Casteels, M., Van Veldhoven, P.P. & Mannaerts, G.P. Phytanoyl-CoA hydroxylase: recognition of 3-methyl-branched acyl-coAs and requirement for GTP or ATP and Mg(2+) in addition to its known hydroxylation cofactors. J. Lipid Res. 41, 629–636 (2000).

    CAS  PubMed  Google Scholar 

  42. Miura, S. et al. Biosynthesis and intracellular transport of enzymes of peroxisomal beta-oxidation. J. Biol. Chem. 259, 6397–6402 (1984).

    CAS  PubMed  Google Scholar 

  43. Schram, A.W. et al. Biosynthesis and maturation of peroxisomal beta-oxidation enzymes in fibroblasts in relation to the Zellweger syndrome and infantile Refsum disease. Proc. Natl. Acad. Sci. USA 83, 6156–6158 (1986).

    Article  CAS  Google Scholar 

  44. Ossendorp, B.C. et al. Tissue-specific distribution of a peroxisomal 46-kDa protein related to the 58-kDa protein (sterol carrier protein x; sterol carrier protein 2/3-oxoacyl-CoA thiolase). Arch. Biochem. Biophys. 334, 251–260 (1996).

    Article  CAS  Google Scholar 

  45. Braverman, N., Dodt, G., Gould, S.J. & Valle, D. An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum. Mol. Genet. 7, 1195–1205 (1998).

    Article  CAS  Google Scholar 

  46. Lazarow, P.B. The import receptor Pex7p and the PTS2 targeting sequence. Biochim. Biophys. Acta 1763, 1599–1604 (2006).

    Article  CAS  Google Scholar 

  47. Kunze, M. et al. Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7. J. Biol. Chem. 286, 45048–45062 (2011).

    Article  CAS  Google Scholar 

  48. Otera, H. et al. Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol. Cell. Biol. 18, 388–399 (1998).

    Article  CAS  Google Scholar 

  49. Fujiki, Y., Matsuzono, Y., Matsuzaki, T. & Fransen, M. Import of peroxisomal membrane proteins: the interplay of Pex3p- and Pex19p-mediated interactions. Biochim. Biophys. Acta 1763, 1639–1646 (2006).

    Article  CAS  Google Scholar 

  50. Freitas, M.O. et al. PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14. J. Biol. Chem. 286, 40509–40519 (2011).

    Article  CAS  Google Scholar 

  51. Dodt, G. et al. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat. Genet. 9, 115–125 (1995).

    Article  CAS  Google Scholar 

  52. Gatto, G. & Geisbrecht, B. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat. Struct. Biol. 7, 1091–1095 (2000).

    Article  CAS  Google Scholar 

  53. Szilard, R.K. & Rachubinski, R.A. Tetratricopeptide repeat domain of Yarrowia lipolytica Pex5p is essential for recognition of the type 1 peroxisomal targeting signal but does not confer full biological activity on Pex5p. Biochem. J. 346, 177–184 (2000).

    Article  CAS  Google Scholar 

  54. Carvalho, A.F. et al. Functional characterization of two missense mutations in Pex5p - C11S and N526K. Biochim. Biophys. Acta 1773, 1141–1148 (2007).

    Article  CAS  Google Scholar 

  55. Nordgren, M. et al. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 11, 1326–1340 (2015).

    Article  CAS  Google Scholar 

  56. Carvalho, A.F. et al. The N-terminal half of the peroxisomal cycling receptor Pex5p is a natively unfolded domain. J. Mol. Biol. 356, 864–875 (2006).

    Article  CAS  Google Scholar 

  57. Schliebs, W. et al. Recombinant human peroxisomal targeting signal receptor PEX5: structural basis for interaction of PEX5 with PEX14. J. Biol. Chem. 274, 5666–5673 (1999).

    Article  CAS  Google Scholar 

  58. Otera, H. et al. Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol. Cell. Biol. 22, 1639–1655 (2002).

    Article  CAS  Google Scholar 

  59. Costa-Rodrigues, J. et al. The N terminus of the peroxisomal cycling receptor, Pex5p, is required for redirecting the peroxisome-associated peroxin back to the cytosol. J. Biol. Chem. 279, 46573–46579 (2004).

    Article  CAS  Google Scholar 

  60. Hwang, S.T. & Schatz, G. Translocation of proteins across the mitochondrial inner membrane, but not into the outer membrane, requires nucleoside triphosphates in the matrix. Proc. Natl. Acad. Sci. USA 86, 8432–8436 (1989).

    Article  CAS  Google Scholar 

  61. Haas, A.L., Warms, J. & Rose, I.A. Ubiquitin adenylate: structure and role in ubiquitin activation. Biochemistry 22, 4388–4394 (1983).

    Article  CAS  Google Scholar 

  62. Pickart, C.M. & Rose, I.A. Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides. J. Biol. Chem. 260, 7903–7910 (1985).

    CAS  PubMed  Google Scholar 

  63. Costa-Rodrigues, J. et al. Pex5p, the peroxisomal cycling receptor, is a monomeric non-globular protein. J. Biol. Chem. 280, 24404–24411 (2005).

    Article  CAS  Google Scholar 

  64. Ferro, A. et al. NEDD8: a new ataxin-3 interactor. Biochim. Biophys. Acta 1773, 1619–1627 (2007).

    Article  CAS  Google Scholar 

  65. Fransen, M., Wylin, T., Brees, C., Mannaerts, G.P. & Van Veldhoven, P.P. Human pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences. Mol. Cell. Biol. 21, 4413–4424 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Fransen, Katholieke Universiteit-Leuven, for critical comments on the manuscript and for the plasmid encoding histidine-tagged PEX19. We thank P. van Veldhoven, Katholieke Universiteit-Leuven, and P. Maciel, Universidade do Minho, for the expression plasmids encoding prePHYH and GST-Ub, respectively. This work was funded by FEDER—Fundo Europeu de Desenvolvimento Regional through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, Portugal's FCT—Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Inovação in the framework of the projects 'The molecular mechanism of protein import into peroxisomes' (FCOMP-01-0124-FEDER-019731-PTDC/BIA-BCM/118577/2010), 'Institute for Research and Innovation in Health Sciences' (POCI-01-0145-FEDER-007274) and 'The molecular mechanisms of peroxisome biogenesis' (PTDC /BEX-BC M/2311/2014) and Norte 2020—Programa Operacional Regional do Norte, under the application of the 'Porto Neurosciences and Neurologic Disease Research Initiative at i3S (NORTE-01-0145-FEDER-000008)', awarded to J.E.A. T.A.R., T.F., A.F.D. and C.P.G. were supported by Fundação para a Ciência e a Tecnologia, Programa Operacional Potencial Humano do QREN and Fundo Social Europeu.

Author information

Authors and Affiliations

Authors

Contributions

T.A.R., T.F., C.P.G. and J.E.A. designed research. T.A.R., T.F., A.F.D. and A.G.P. performed the experiments. T.A.R., T.F., A.F.D., A.G.P., C.P.G. and J.E.A. wrote and edited the manuscript.

Corresponding author

Correspondence to Jorge E Azevedo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, T., Francisco, T., Dias, A. et al. A cell-free organelle-based in vitro system for studying the peroxisomal protein import machinery. Nat Protoc 11, 2454–2469 (2016). https://doi.org/10.1038/nprot.2016.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.147

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing