Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Selective amplification and sequencing of cyclic phosphate–containing RNAs by the cP-RNA-seq method

Abstract

RNA digestions catalyzed by many ribonucleases generate RNA fragments that contain a 2′,3′-cyclic phosphate (cP) at their 3′ termini. However, standard RNA-seq methods are unable to accurately capture cP-containing RNAs because the cP inhibits the adapter ligation reaction. We recently developed a method named cP-RNA-seq that is able to selectively amplify and sequence cP-containing RNAs. Here we describe the cP-RNA-seq protocol in which the 3′ termini of all RNAs, except those containing a cP, are cleaved through a periodate treatment after phosphatase treatment; hence, subsequent adapter ligation and cDNA amplification steps are exclusively applied to cP-containing RNAs. cP-RNA-seq takes 6 d, excluding the time required for sequencing and bioinformatics analyses, which are not covered in detail in this protocol. Biochemical validation of the existence of cP in the identified RNAs takes 3 d. Even though the cP-RNA-seq method was developed to identify angiogenin-generating 5′-tRNA halves as a proof of principle, the method should be applicable to global identification of cP-containing RNA repertoires in various transcriptomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of the reactivity of a 3′-P and a 3′-cP with enzymatic treatments.
Figure 2: A schematic representation of the cP-RNA-seq procedure for selective amplification and sequencing of cP-containing RNAs.
Figure 3: Selective amplification of mouse 5′-tRNA halves using cP-RNA-seq.
Figure 4: Biochemical validation of the presence of a cP in a mouse 5′-tRNA half.

Similar content being viewed by others

References

  1. Trotta, C.R. et al. The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell 89, 849–858 (1997).

    Article  CAS  Google Scholar 

  2. Sidrauski, C. & Walter, P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031–1039 (1997).

    Article  CAS  Google Scholar 

  3. Luhtala, N. & Parker, R. T2 Family ribonucleases: ancient enzymes with diverse roles. Trends Biochem. Sci. 35, 253–259 (2010).

    Article  CAS  Google Scholar 

  4. Cooper, D.A., Jha, B.K., Silverman, R.H., Hesselberth, J.R. & Barton, D.J. Ribonuclease L and metal-ion-independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Res. 42, 5202–5216 (2014).

    Article  CAS  Google Scholar 

  5. Honda, S. et al. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc. Natl. Acad. Sci. USA 112, E3816–E3825 (2015).

    Article  CAS  Google Scholar 

  6. Zhang, Y., Zhang, J., Hara, H., Kato, I. & Inouye, M. Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. J. Biol. Chem. 280, 3143–3150 (2005).

    Article  CAS  Google Scholar 

  7. Nikolaev, Y. et al. The leucine zipper domains of the transcription factors GCN4 and c-Jun have ribonuclease activity. PLoS ONE 5, e10765 (2010).

    Article  Google Scholar 

  8. Laneve, P. et al. The tumor marker human placental protein 11 is an endoribonuclease. J. Biol. Chem. 283, 34712–34719 (2008).

    Article  CAS  Google Scholar 

  9. Ivanov, K.A. et al. Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc. Natl. Acad. Sci. USA 101, 12694–12699 (2004).

    Article  CAS  Google Scholar 

  10. Tomita, K., Ogawa, T., Uozumi, T., Watanabe, K. & Masaki, H. A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc. Natl. Acad. Sci. USA 97, 8278–8283 (2000).

    Article  CAS  Google Scholar 

  11. Ferre-D'Amare, A.R. & Scott, W.G. Small self-cleaving ribozymes. Cold Spring Harb. Perspect. Biol. 2, a003574 (2010).

    Article  CAS  Google Scholar 

  12. Roth, A. et al. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat. Chem. Biol. 10, 56–60 (2014).

    Article  CAS  Google Scholar 

  13. Shchepachev, V., Wischnewski, H., Missiaglia, E., Soneson, C. & Azzalin, C.M. Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3′-to-5′ RNA exonuclease processing U6 small nuclear RNA. Cell Rep. 2, 855–865 (2012).

    Article  CAS  Google Scholar 

  14. Licht, K., Medenbach, J., Luhrmann, R., Kambach, C. & Bindereif, A. 3′-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins. RNA 14, 1532–1538 (2008).

    Article  CAS  Google Scholar 

  15. Lee, K.P. et al. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 132, 89–100 (2008).

    Article  CAS  Google Scholar 

  16. Zhang, C. et al. HSPC111 governs breast cancer growth by regulating ribosomal biogenesis. Mol. Cancer Res. 12, 583–594 (2014).

    Article  CAS  Google Scholar 

  17. Yoshihisa, T. Handling tRNA introns, archaeal way and eukaryotic way. Front. Genet. 5, 213 (2014).

    Article  Google Scholar 

  18. Yamasaki, S., Ivanov, P., Hu, G.F. & Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 185, 35–42 (2009).

    Article  CAS  Google Scholar 

  19. Emara, M.M. et al. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J. Biol. Chem. 285, 10959–10968 (2010).

    Article  CAS  Google Scholar 

  20. Ivanov, P., Emara, M.M., Villen, J., Gygi, S.P. & Anderson, P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 43, 613–623 (2011).

    Article  CAS  Google Scholar 

  21. Ivanov, P. et al. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc. Natl. Acad. Sci. USA 111, 18201–18206 (2014).

    Article  CAS  Google Scholar 

  22. Blanco, S. et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 33, 2020–2039 (2014).

    Article  CAS  Google Scholar 

  23. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

    Article  CAS  Google Scholar 

  24. Londin, E. et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc. Natl. Acad. Sci. USA 112, E1106–E1115 (2015).

    Article  CAS  Google Scholar 

  25. Amitsur, M., Levitz, R. & Kaufmann, G. Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J. 6, 2499–2503 (1987).

    Article  CAS  Google Scholar 

  26. Lund, E. & Dahlberg, J.E. Cyclic 2′,3′-phosphates and nontemplated nucleotides at the 3′ end of spliceosomal U6 small nuclear RNA's. Science 255, 327–330 (1992).

    Article  CAS  Google Scholar 

  27. Schutz, K., Hesselberth, J.R. & Fields, S. Capture and sequence analysis of RNAs with terminal 2′,3′-cyclic phosphates. RNA 16, 621–631 (2010).

    Article  CAS  Google Scholar 

  28. Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935 (2005).

    Article  CAS  Google Scholar 

  29. Yang, Z., Ebright, Y.W., Yu, B. & Chen, X. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res. 34, 667–675 (2006).

    Article  CAS  Google Scholar 

  30. Horwich, M.D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265–1272 (2007).

    Article  CAS  Google Scholar 

  31. Kirino, Y. & Mourelatos, Z. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat. Struct. Mol. Biol. 14, 347–348 (2007).

    Article  CAS  Google Scholar 

  32. Ohara, T. et al. The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nat. Struct. Mol. Biol. 14, 349–350 (2007).

    Article  CAS  Google Scholar 

  33. Saito, K. et al. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends. Genes Dev. 21, 1603–1608 (2007).

    Article  CAS  Google Scholar 

  34. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129, 69–82 (2007).

    Article  CAS  Google Scholar 

  35. Kurata, S., Ohtsuki, T., Suzuki, T. & Watanabe, K. Quick two-step RNA ligation employing periodate oxidation. Nucleic Acids Res. 31, e145 (2003).

    Article  Google Scholar 

  36. Kellner, S., Burhenne, J. & Helm, M. Detection of RNA modifications. RNA Biol. 7, 237–247 (2010).

    Article  CAS  Google Scholar 

  37. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    Article  CAS  Google Scholar 

  38. Cozen, A.E. et al. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879–884 (2015).

    Article  CAS  Google Scholar 

  39. Zaug, A.J., Linger, J. & Cech, T.R. Method for determining RNA 3′ ends and application to human telomerase RNA. Nucleic Acids Res. 24, 532–533 (1996).

    Article  CAS  Google Scholar 

  40. Saito, K. et al. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev. 24, 2493–2498 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a US National Institutes of Health (NIH) grant (GM106047, to Y.K.) and a Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad (to S.H.).

Author information

Authors and Affiliations

Authors

Contributions

S.H. and Y.K. conceived cP-RNA-seq and the general experimental design. S.H. and K.M. performed experiments. S.H., K.M. and Y.K. wrote the paper.

Corresponding author

Correspondence to Yohei Kirino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honda, S., Morichika, K. & Kirino, Y. Selective amplification and sequencing of cyclic phosphate–containing RNAs by the cP-RNA-seq method. Nat Protoc 11, 476–489 (2016). https://doi.org/10.1038/nprot.2016.025

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.025

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing