Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone–labeled disaccharides with LC-fluorescence and LC-MS detection

Abstract

Glycosaminoglycans (GAGs) possess considerable heterogeneity in average molecular mass, molecular mass range, disaccharide composition and content and position of sulfo groups. Despite recent technological advances in the analysis of GAGs, the determination of GAG disaccharide composition still remains challenging and provides key information required for understanding GAG function. Analysis of GAG-derived disaccharides relies on enzymatic treatment, providing one of the most practical and quantitative approaches for compositional mapping. Tagging the reducing end of disaccharides with an aromatic fluorescent label affords stable derivatives with properties that enable improved detection and resolution. HPLC with on-line electrospray ionization mass spectrometry (ESI-MS) offers a relatively soft ionization method for detection and characterization of sulfated oligosaccharides. GAGs obtained from tissues, biological fluids or cells are treated with various enzymes to obtain disaccharides that are fluorescently labeled with 2-aminoacridone (AMAC) and resolved by different LC systems for high-sensitivity detection by fluorescence, and then they are unambiguously characterized by MS. The preparation and labeling of GAG-derived disaccharides can be performed in 1–2 d, and subsequent HPLC separation and on-line fluorescence detection and ESI-MS analysis takes another 1–2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatogram of HA/CS/DS unsaturated disaccharides fluorotagged with AMAC, separated on an X-Bridge RP18 column.
Figure 2: ESI-MS spectra in the negative mode of HA/CS/DS and HS/hep disaccharides fluorotagged with AMAC.
Figure 3: Analysis of AMAC-tagged constituent disaccharides (and sulfated monosaccharide, GalNS) of CS from bovine, skate cartilage and DS from porcine mucosa obtained by exhaustive treatment with chondroitin ABC lyase and separated on an X-Bridge RP18 column.
Figure 4: Analysis of disaccharides from endogeneous healthy human plasma CS derivatized with AMAC, separated on an X-Bridge RP18 column.
Figure 5: TIC of Hep/HS unsaturated disaccharides derivatized with AMAC separated by a Discovery C18 column and detected by ESI-MS in negative ion mode.
Figure 6: TIC of disaccharides produced by the exhaustive action of Hep lyases on beef spleen HS (HS), beef mucosa Hep (UHF), fast-moving Hep (FM-Hep) and LMW-Hep dalteparin (Dalteparin) fluorotaggged with AMAC and separated on a Discovery C18 column and detected by ESI-MS.
Figure 7: EIC of AMAC-tagged disaccharide standards and from GAGs extracted from different biological sources.

Similar content being viewed by others

References

  1. Gupta, G. & Surolia, A. Glycomics: an overview of the complex glycocode. Adv. Exp. Med. Biol. 749, 1–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Raman, R. et al. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat. Methods 2, 817–824 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Shriver, Z. et al. Glycomics: a pathway to a class of new and improved therapeutics. Nat. Rev. Drug Discov. 3, 863–873 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Dennis, J.W. et al. Protein glycosylation in development and disease. Bioessays 21, 412–421 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Feizi, T. & Mulloy, B. Carbohydrates and glycoconjugates. Glycomics: the new era of carbohydrate biology. Curr. Opin. Struct. Biol. 13, 602–604 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Ly, M. et al. Proteoglycanomics: recent progress and future challenges. OMICS 14, 389–399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gesslbauer, B. et al. Proteoglycanomics: tools to unravel the biological function of glycosaminoglycans. Proteomics 7, 2870–2880 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Morgan, M.R. et al. Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8, 957–969 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Capila, I. & Linhardt, R.J. Heparin–protein interactions. Angew. Chem. Int. Ed. Engl. 41, 391–412 (2002).

    Article  PubMed  Google Scholar 

  10. Cattaruzza, S. & Perris, R. Approaching the proteoglycome: molecular interactions of proteoglycans and their functional output. Macromol. Biosci. 6, 667–680 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Cattaruzza, S. et al. Proteoglycans in the control of tumor growth and metastasis formation. Connect. Tissue Res. 49, 225–229 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Gesslbauer, B. et al. New targets for glycosaminoglycans and glycosaminoglycans as novel targets. Exp. Rev. Proteomics 10, 77–95 (2013).

    Article  CAS  Google Scholar 

  13. Zhao, X. et al. Sequence analysis and domain motifs in the porcine skin decorin glycosaminoglycan chain. J. Biol. Chem. 288, 9226–9237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, L. et al. Proteoglycan sequence. Mol. Biosyst. 8, 1613–1625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jackson, R.L. et al. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 71, 481–539 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Gama, C.I. & Hsieh-Wilson, L.C. Chemical approaches to deciphering the glycosaminoglycan code. Curr. Opin. Chem. Biol. 9, 609–619 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Fraser, J.R.E. et al. Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242, 27–33 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Volpi, N. Analytical aspects of pharmaceutical grade chondroitin sulfates. J. Pharm. Sci. 96, 3168–3180 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Sugahara, K. et al. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13, 612–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Yamada, S. & Sugahara, K. Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr. Drug. Discov. Technol. 5, 289–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Sugahara, K. & Mikami, T. Chondroitin/dermatan sulfate in the central nervous system. Curr. Opin. Struct. Biol. 17, 536–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Volpi, N. Advances in chondroitin sulfate analysis: application in physiological and pathological states of connective tissue and during pharmacological treatment of osteoarthritis. Curr. Pharm. Des. 12, 639–658 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Linhardt, R.J. et al. New methodologies in heparin structure analysis and the generation of LMW heparins. Adv. Exp. Med. Biol. 313, 37–47 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Rabenstein, D.L. Heparin and heparan sulfate: structure and function. Nat. Prod. Rep. 19, 312–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Casu, B. Structure of heparin and heparin fragments. Ann. N.Y. Acad. Sci. 556, 1–17 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Casu, B. Structure and biological activity of heparin. Adv. Carbohydr. Chem. Biochem. 43, 51–134 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Kamhi, E. et al. Glycosaminoglycans in infectious disease. Biol. Rev. Camb. Philos. Soc. 88, 928–943 (2013).

    Article  PubMed  Google Scholar 

  28. Kogan, G. et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29, 17–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Volpi, N. et al. Role, metabolism, chemical modifications and applications of hyaluronan. Curr. Med. Chem. 16, 1718–1745 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Gray, E. et al. The anticoagulant and antithrombotic mechanisms of heparin. Handb. Exp. Pharmacol. 207, 43–61 (2012).

    Article  CAS  Google Scholar 

  31. Hassan, Y. et al. Heparin-induced thrombocytopenia and recent advances in its therapy. J. Clin. Pharm. Ther. 32, 535–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Masuko, S. & Linhardt, R.J. Chemoenzymatic synthesis of the next generation of ultralow MW heparin therapeutics. Future Med. Chem. 4, 289–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Z et al. Control of the heparosan N-deacetylation leads to an improved bioengineered heparin. Appl. Microbiol. Biotechnol. 91, 91–99 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, H. et al. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS ONE 6, e21106 (82011).

    Article  CAS  Google Scholar 

  35. Volpi, N. (Ed.) Chondroitin Sulfate: Structure, Role, and Pharmacological Activity (Academic Press, 2006).

  36. Karst, N.A. & Linhardt, R.J. Recent chemical and enzymatic approaches to the synthesis of glycosaminoglycan oligosaccharides. Curr. Med. Chem. 10, 1993–2031 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Leymarie, N. & Zaia, J. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal. Chem. 84, 3040–3048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Volpi, N. et al. Electrophoresis for the analysis of heparin purity and quality. Electrophoresis 33, 1531–1537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, B. et al. Hyphenated techniques for the analysis of heparin and heparan sulfate. Anal. Bioanal. Chem. 399, 541–557 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Sisu, E. et al. Modern developments in mass spectrometry of chondroitin and dermatan sulfate glycosaminoglycans. Amino Acids 41, 235–256 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Beni, S. et al. Analysis and characterization of heparin impurities. Anal. Bioanal. Chem. 399, 527–239 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Zaia, J. Mass spectrometry and glycomics. OMICS 14, 401–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zaia, J. On-line separations combined with MS for analysis of glycosaminoglycans. Mass. Spectrom. Rev. 28, 254–272 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Volpi, N. et al. Capillary electrophoresis of complex natural polysaccharides. Electrophoresis 29, 3095–3106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amon, S. et al. Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis 29, 2485–2507 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Volpi, N. & Linhardt, R.J. High-performance liquid chromatography-mass spectrometry for mapping and sequencing glycosaminoglycan-derived oligosaccharides. Nat. Protoc. 5, 993–1004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Michaud, P. et al. Polysaccharide lyases: recent developments as biotechnological tools. Crit. Rev. Biotechnol. 23, 233–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Ernst, S. et al. Enzymatic degradation of glycosaminoglycans. Crit. Rev. Biochem. Mol. Biol. 30, 387–444 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Linhardt, R.J. et al. Polysaccharide lyases. Appl. Biochem. Biotechnol. 12, 135–176 (1986).

    Article  CAS  PubMed  Google Scholar 

  50. Xia, B. et al. Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods 2, 845–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Hase, H. Precolumn derivatization for chromatographic and electrophoretic analyses of carbohydrates. J. Chrom. A 720, 173–182 (1996).

    Article  CAS  Google Scholar 

  52. Chang, Y. et al. Capillary electrophoresis for the analysis of glycosaminoglycan-derived disaccharides. Methods Mol. Biol. 984, 67–77 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Chang, Y. et al. Analysis of glycosaminoglycan-derived disaccharides by capillary electrophoresis using laser-induced fluorescence detection. Anal. Biochem. 427, 91–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, B. et al. Disaccharide analysis of glycosaminoglycan mixtures by ultra-high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 1225, 91–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Galeotti, F. & Volpi, N. Online reverse phase-high-performance liquid chromatography-fluorescence detection-electrospray ionization-mass spectrometry separation and characterization of heparan sulfate, heparin, and low-molecular weight-heparin disaccharides derivatized with 2-aminoacridone. Anal. Chem. 83, 6770–6777 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Takegawa, Y. et al. Simultaneous analysis of heparan sulfate, chondroitin/dermatan sulfates, and hyaluronan disaccharides by glycoblotting-assisted sample preparation followed by single-step zwitterionic-hydrophilic interaction chromatography. Anal. Chem. 83, 9443–9449 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Skidmore, M.A. et al. Disaccharide compositional analysis of heparan sulfate and heparin polysaccharides using UV or high-sensitivity fluorescence (BODIPY) detection. Nat. Protoc. 5, 1983–1992 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Volpi, N. High-performance liquid chromatography and on-line mass spectrometry detection for the analysis of chondroitin sulfates/hyaluronan disaccharides derivatized with 2-aminoacridone. Anal. Biochem. 397, 12–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Ambrosius, M. et al. Quantitative determination of the glycosaminoglycan δ-disaccharide composition of serum, platelets and granulocytes by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1201, 54–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Deakin, J.A. et al. Simplified and sensitive fluorescent method for disaccharide analysis of both heparan sulfate and chondroitin/dermatan sulfates from biological samples. Glycobiology 18, 483–491 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Hitchcock, A.M. et al. Improved workup for glycosaminoglycan disaccharide analysis using CE with LIF detection. Electrophoresis 29, 4538–4548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Militsopoulou, M. et al. Determination of twelve heparin- and heparan sulfate-derived disaccharides as 2-aminoacridone derivatives by capillary zone electrophoresis using ultraviolet and laser-induced fluorescence detection. Electrophoresis 23, 1104–1109 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Okafo, G. et al. A coordinated high-performance liquid chromatographic, capillary electrophoretic, and mass spectrometric approach for the analysis of oligosaccharide mixtures derivatized with 2-aminoacridone. Anal. Chem. 68, 4424–4430 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Starr, C.M. et al. Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. J. Chromatogr. A 720, 295–321 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Imanari, T. et al. High-performance liquid chromatographic analysis of glycosaminoglycan-derived oligosaccharides. J. Chromatogr. A 720, 275–293 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Galeotti, F. & Volpi, N. Novel reverse-phase ion pair-high performance liquid chromatography separation of heparin, heparan sulfate and low molecular weight-heparins disaccharides and oligosaccharides. J. Chromatogr. A 1284, 141–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Karamanos, N.K. et al. Ion-pair high-performance liquid chromatography for determining disaccharide composition in heparin and heparan sulphate. J. Chromatogr. A 765, 169–179 (1997).

    Article  PubMed  Google Scholar 

  68. Calabro, A. et al. Fluorophore-assisted carbohydrate electrophoresis (FACE) of glycosaminoglycans. Osteoarthritis Cartilage 9, S16–S22 (2001).

    Article  PubMed  Google Scholar 

  69. Okafo, G. et al. A coordinated high-performance liquid chromatographic, capillary electrophoretic, and mass spectrometric approach for the analysis of oligosaccharide mixtures derivatized with 2-aminoacridone. Anal. Chem. 68, 4424–4430 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, Z. et al. Liquid chromatography-mass spectrometry to study chondroitin lyase action pattern. Anal. Biochem. 385, 57–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Linhardt, R.J. Analysis of glycosaminoglycans with polysaccharide lyases. Curr. Protoc. Mol. Biol. 48, 17.13.B.1–17.13.B.16 (2001).

    Google Scholar 

  72. Buzzega, D. et al. Fluorophore-assisted carbohydrate electrophoresis for the determination of molecular mass of heparins and low-molecular-weight (LMW) heparins. Electrophoresis 29, 4192–4202 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Volpi, N. & Maccari, F. Detection of submicrogram quantities of glycosaminoglycans on agarose gels by sequential staining with toluidine blue and Stains-All. Electrophoresis 23, 4060–4066 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, F. et al. Microscale isolation and analysis of heparin from plasma using an anion exchange column. Anal. Biochem. 353, 284–286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shao, C. et al. Comparative glycomics of leukocyte glycosaminoglycans. FEBS J. 280, 2447–2461 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Di Iorio, E. et al. Localization and expression of CHST6 and keratan sulfate proteoglycans in the human cornea. Exp. Eye Res. 91, 293–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Mizumoto, S. & Sugahara, K. Glycosaminoglycan chain analysis and characterization (glycosylation/epimerization). Methods Mol. Biol. 836, 99–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Cesaretti, M. et al. A 96-well assay for uronic acid carbazole reaction. Carb. Polym. 54, 59–61 (2003).

    Article  CAS  Google Scholar 

  79. Malavaki, C.J. et al. Capillary electrophoresis for the quality control of chondroitin sulfates in raw materials and formulations. Anal. Biochem. 374, 213–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Korir, A.K. et al. Ultraperformance ion-pair liquid chromatography coupled to electrospray time-of-flight mass spectrometry for compositional profiling and quantification of heparin and heparan sulfate. Anal. Chem. 80, 1297–1306 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Saad, O.M. & Leary, J.A. Compositional analysis and quantification of heparin and heparan sulfate by electrospray ionization ion trap mass spectrometry. Anal. Chem. 75, 2985–2995 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, Z. et al. Tandem MS can distinguish hyaluronic acid from N-acetylheparosan. J. Am. Soc. Mass Spectrom. 19, 82–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Kailemia, M.J. et al. Complete mass spectral characterization of a synthetic ultralow-molecular-weight heparin using collision-induced dissociation. Anal. Chem. 84, 5475–5478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Galeotti, F. et al. On-line high-performance liquid chromatography-fluorescence detection-electrospray ionization-mass spectrometry profiling of human milk oligosaccharides derivatized with 2-aminoacridone. Anal. Biochem. 430, 97–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Lawrence, R. et al. Disaccharide structure code for the easy representation of constituent oligosaccharides from glycosaminoglycans. Nat. Methods 5, 291–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Da Col, R. et al. Characterization of the chemical structure of sulphated glycosaminoglycans after enzymatic digestion. Application of liquid chromatography-mass spectrometry with an atmospheric pressure interface. J. Chromatogr. 647, 289–300 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Oguma, T. et al. Analytical method of chondroitin/dermatan sulfates using high performance liquid chromatography/turbo ionspray ionization mass spectrometry: application to analyses of the tumor tissue sections on glass slides. Biomed. Chromatogr. 15, 356–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Oguma, T. et al. Analytical method of heparan sulfates using high-performance liquid chromatography turbo-ionspray ionization tandem mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 754, 153–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Zaia, J. & Costello, C.E. Compositional analysis of glycosaminoglycans by electrospray mass spectrometry. Anal. Chem. 73, 233–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Hitchcock, A.M. et al. Glycoform quantification of chondroitin/dermatan sulfate using a liquid chromatography-tandem mass spectrometry platform. Biochemistry 45, 2350–2361 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Kuberan, B. et al. Analysis of heparan sulfate oligosaccharides with ion pair-reverse phase capillary high performance liquid chromatography-microelectrospray ionization time-of-flight mass spectrometry. J. Am. Chem. Soc. 124, 8707–8718 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Kühn, A.V. et al. Quantification of hyaluronic acid fragments in pharmaceutical formulations using LC-ESI-MS. J. Pharm. Biomed. Anal. 30, 1531–1537 (2003).

    Article  PubMed  Google Scholar 

  93. Thanawiroon, C. et al. Liquid chromatography/mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides. J. Biol. Chem. 279, 2608–2615 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Volpi, N. Mass spectrometry characterization of Escherichia coli K4 oligosaccharides from 2-mers to more than 20-mers. Rapid Commun. Mass Spectrom. 21, 3459–3466 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Volpi, N. et al. Mass spectrometry for the characterization of unsulfated chondroitin oligosaccharides from 2-mers to 16-mers. Comparison with hyaluronic acid oligomers. Rapid Commun. Mass Spectrom. 22, 3526–3530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Volpi, N. Chondroitin C lyase [4.2.2.] is unable to cleave fructosylated sequences inside the partially fructosylated Escherichia coli K4 polymer. Glycoconj. J. 25, 451–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Volpi, N. & Maccari, F. Structural characterization and antithrombin activity of dermatan sulfate purified from marine clam Scapharca inaequivalvis. Glycobiology 19, 356–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Henriksen, J. et al. On-line size-exclusion chromatography/mass spectrometry of low-molecular-mass heparin. J. Mass Spectrom. 39, 1305–1312 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Barroso, B. et al. Analysis of proteoglycans derived sulphated disaccharides by liquid chromatography/mass spectrometry. J. Chromatogr. A 1080, 43–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Karlsson, N.G. et al. Use of graphitised carbon negative ion LC-MS to analyse enzymatically digested glycosaminoglycans. J. Chromatogr. B 824, 139–147 (2005).

    Article  CAS  Google Scholar 

  101. Henriksen, J. et al. Ion-pairing reversed-phased chromatography/mass spectrometry of heparin. Carb. Res. 341, 382–387 (2006).

    Article  CAS  Google Scholar 

  102. Bisio, A. et al. High-performance liquid chromatographic/mass spectrometric studies on the susceptibility of heparin species to cleavage by heparanase. Semin. Throm. Hemost. 33, 488–495 (2007).

    Article  CAS  Google Scholar 

  103. Volpi, N. On-line HPLC/ESI-MS separation and characterization of hyaluronan oligosaccharides from 2-mers to 40-mers. Anal. Chem. 79, 6390–6397 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Naimy, H. et al. Characterization of heparin oligosaccharides binding specifically to antithrombin III using mass spectrometry. Biochemistry 47, 3155–3161 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Hitchcock, A.M. et al. Comparative glycomics of connective tissue glycosaminoglycans. Proteomics 8, 1384–1397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Doneanu, C.E. et al. Analysis of oligosaccharides derived from heparin by ion-pair reversed-phase chromatography/mass spectrometry. Anal. Chem. 81, 3485–3499 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, Z. et al. Quantification of heparan sulfate disaccharides using ion-pairing reversed-phase microflow high-performance liquid chromatography with electrospray ionization trap mass spectrometry. Anal. Chem. 81, 4349–4355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Heinegard, D. Hyaluronidase digestion and alkaline treatment of bovine tracheal cartilage proteoglycans. Biochem. Biophys. Acta 285, 193–207 (1972).

    CAS  PubMed  Google Scholar 

  109. Brustkern, A.M. et al. Characterization of currently marketed heparin products: reversed-phase ion-pairing liquid chromatography mass spectrometry of heparin digests. Anal. Chem. 82, 9865–9870 (2012).

    Article  CAS  Google Scholar 

  110. Yang, B. et al. Ultra-performance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Anal. Biochem. 415, 59–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, B. et al. Characterization of currently marketed heparin products: analysis of heparin digests by RPIP-UHPLC-QTOF-MS. J. Pharm. Biomed. Anal. 67-68, 42–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Li, L. et al. Top-down approach for the direct characterization of low-molecular-weight heparins using LC-FT-MS. Anal. Chem. 84, 8822–8829 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. N.V. designed and developed the on-line HPLC-FD-ESI-MS analysis of AMAC-tagged GAGs disaccharides. R.J.L. and B.Y. designed and developed the RP-HPLC-ESI-MS concurrent separation of multiple families of AMAC-tagged GAG disaccharides. F.G. applied this methodology to the structural study of various GAGs.

Corresponding author

Correspondence to Nicola Volpi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Tuning of mass spectral parameters to minimize sulfo-group loss on N,2,6triSHS disaccharide (D2S6).

A. Spectra showing a high sulfo-group (SO3) loss. B. Optimized spectra after tuning showing no (or minimal) sulfo group (SO3) loss. This tuning should be performed prior to performing analyses.

Supplementary information

Supplementary Figure 1

Tuning of mass spectral parameters to minimize sulfo-group loss on N,2,6triSHS disaccharide (D2S6). (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpi, N., Galeotti, F., Yang, B. et al. Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone–labeled disaccharides with LC-fluorescence and LC-MS detection. Nat Protoc 9, 541–558 (2014). https://doi.org/10.1038/nprot.2014.026

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.026

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing