Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Transcriptome-wide target profiling of RNA cytosine methyltransferases using the mechanism-based enrichment procedure Aza-IP

Abstract

Cytosine methylation within RNA is common, but its full scope and functions are poorly understood, as the RNA targets of most mammalian cytosine RNA methyltransferases (m5C-RMTs) remain uncharacterized. To enable their characterization, we developed a mechanism-based method for transcriptome-wide m5C-RMT target profiling. All characterized mammalian m5C-RMTs form a reversible covalent intermediate with their cytosine substrate—a covalent linkage that is trapped when conducted on the cytosine analog 5-azacytidine (5-aza-C). We used this property to develop Aza-immunoprecipitation (Aza-IP), a methodology to form stable m5C-RMT-RNA linkages in cell culture, followed by IP and high-throughput sequencing, to identify direct RNA substrates of m5C-RMTs. Remarkably, a cytosine-to-guanine (C→G) transversion occurs specifically at target cytosines, allowing the simultaneous identification of the precise target cytosine within each RNA. Thus, Aza-IP reports only direct RNA substrates and the C→G transversion provides an important criterion for target cytosine identification, which is not available in alternative approaches. Here we present a step-by-step protocol for Aza-IP and downstream analysis, designed to reveal identification of substrate RNAs and precise cytosine targets of m5C-RMTs. The entire protocol takes 40–50 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of 5-aza-C-mediated RNA-m5C-RMT adduct formation.
Figure 2: Schematic representation of the major steps in a typical Aza-IP experiment.
Figure 3: Aza-IP bioinformatic analysis.
Figure 4: Validation of candidate target sites by RNAi and conventional RNA bisulfite sequencing.

Similar content being viewed by others

References

  1. Machnicka, M.A. et al. MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Helm, M. Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res. 34, 721–733 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Mercer, T.R. & Mattick, J.S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20, 300–307 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Kellner, S., Burhenne, J. & Helm, M. Detection of RNA modifications. RNA Biol. 7, 237–247 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Motorin, Y., Muller, S., Behm-Ansmant, I. & Branlant, C. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol. 425, 21–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Affymetrix ENCODE Transcriptome Project; Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, 1028–1032 (2009).

  8. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Meyer, K.D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Edelheit, S., Schwartz, S., Mumbach, M.R., Wurtzel, O. & Sorek, R. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet. 9, e1003602 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gowda, M. et al. Genome-wide characterization of methylguanosine-capped and polyadenylated small RNAs in the rice blast fungus Magnaporthe oryzae. Nucleic Acids Res. 38, 7558–7569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khoddami, V. & Cairns, B.R. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31, 458–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Motorin, Y., Lyko, F. & Helm, M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 38, 1415–1430 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Santi, D.V., Garrett, C.E. & Barr, P.J. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33, 9–10 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, L.W., Chiang, G.H., Medina, D. & Randerath, K. Drug effects on nucleic acid modification. I. A specific effect of 5-azacytidine on mammalian transfer RNA methylation in vivo. Biochem. Biophys. Res. Commun. 68, 1094–1101 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Lu, L.J. & Randerath, K. Effects of 5-azacytidine on transfer RNA methyltransferases. Cancer Res. 39, 940–949 (1979).

    CAS  PubMed  Google Scholar 

  17. Schaefer, M., Hagemann, S., Hanna, K. & Lyko, F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 69, 8127–8132 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Oki, Y., Aoki, E. & Issa, J.P. Decitabine–bedside to bench. Crit. Rev. Oncol. Hematol. 61, 140–152 (2007).

    Article  PubMed  Google Scholar 

  19. Squires, J.E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hussain, S. et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 4, 255–261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tuorto, F. et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat. Struct. Mol. Biol. 19, 900–905 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Abbasi-Moheb, L. et al. Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am. J. Hum. Genet. 90, 847–855 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan, M.A. et al. Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am. J. Hum. Genet. 90, 856–863 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martinez, F.J. et al. Whole-exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J. Med. Genet. 49, 380–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Frye, M. & Watt, F.M. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr. Biol. 16, 971–981 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Blanco, S. et al. The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet. 7, e1002403 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan, C.T. et al. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 6, e1001247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Becker, M. et al. Pmt1, a Dnmt2 homolog in Schizosaccharomyces pombe, mediates tRNA methylation in response to nutrient signaling. Nucleic Acids Res. 40, 11648–11658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan, C.T. et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Rai, K. et al. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev. 21, 261–266 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fonagy, A. et al. Cell cycle regulated expression of nucleolar antigen P120 in normal and transformed human fibroblasts. J. Cell Physiol. 154, 16–27 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Frye, M. et al. Genomic gain of 5p15 leads to over-expression of Misu (NSUN2) in breast cancer. Cancer Lett. 289, 71–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Okamoto, M. et al. Frequent increased gene copy number and high protein expression of tRNA (cytosine-5-)-methyltransferase (NSUN2) in human cancers. DNA Cell Biol. 31, 660–671 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Job, B. et al. Genomic aberrations in lung adenocarcinoma in never smokers. PLoS ONE 5, e15145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Doll, A. & Grzeschik, K.H. Characterization of two novel genes, WBSCR20 and WBSCR22, deleted in Williams-Beuren syndrome. Cytogenet Cell Genet. 95, 20–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Harris, T., Marquez, B., Suarez, S. & Schimenti, J. Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases. Biol. Reprod. 77, 376–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Jurkowski, T.P. et al. Human DNMT2 methylates tRNAAsp molecules using a DNA methyltransferase-like catalytic mechanism. RNA 14, 1663–1670 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. King, M.Y. & Redman, K.L. RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine. Biochemistry 41, 11218–11225 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Sharma, S., Yang, J., Watzinger, P., Kotter, P. & Entian, K.D. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res. 41, 9062–9076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hussain, S. et al. The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability. J. Cell Biol. 186, 27–40 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chi, L. & Delgado-Olguin, P. Expression of NOL1/NOP2/sun domain (Nsun) RNA methyltransferase family genes in early mouse embryogenesis. Gene Expr. Patterns 13, 319–327 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Nix, D.A., Courdy, S.J. & Boucher, K.M. Empirical methods for controlling false positives and estimating confidence in ChIP-seq peaks. BMC Bioinformatics 9, 523 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Koboldt, D.C. et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 2283–2285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robinson, J.T. et al. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klages, N., Zufferey, R. & Trono, D. A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol. Ther. 2, 170–176 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Schlichter, T. Parnell, A. Yerra, B. Dalley, N. Moss, K. Basham, D. Nix, T. Mosbruger and B. Milash for their helpful comments and suggestions for improving the manuscript. This work was supported by HHMI and the Samuel Waxman Cancer Research Foundation, as well as by the National Cancer Institute CA24014 (for core facilities). We thank V. Planelles (University of Utah) for pPR-lentiviral expression plasmid.

Author information

Authors and Affiliations

Authors

Contributions

B.R.C. and V.K. together conceived Aza-IP and the general experimental design. V.K. was involved in detailed design, implementation of all experiments and bioinformatic analysis for Aza-IP and RNA bisulfite sequencing. V.K. and B.R.C. wrote the main text. V.K. wrote the remaining text. V.K. designed and made all figures, with comments from B.R.C.

Corresponding author

Correspondence to Bradley R Cairns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Schematic of the 2-step PCR amplification of NSUN2 mRNA.

First, cDNA is made using the oligo-dT primer (Step 5). Next, the F1 and R primers are used to produce amplicon 1 (Steps 6-8), which is used as template for the F2 and R primers to produce amplicon 2 (Steps 9-11). Amplicon 2 contains all the elements of the designed construct (Supplementary Data). Sequences of the F1, F2 and R primers are provided in the MATERIALS section.

Supplementary information

Supplementary Figure 1

Schematic of the 2-step PCR amplification of NSUN2 mRNA. (PDF 137 kb)

Supplementary Data

Supplementary Table 1: CDS and protein sequences of the NSUN2 variant 1. Supplementary Table 2: Designed NSUN2 amplicon for restriction enzyme digestion and cloning into lentiviral vector. (PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoddami, V., Cairns, B. Transcriptome-wide target profiling of RNA cytosine methyltransferases using the mechanism-based enrichment procedure Aza-IP. Nat Protoc 9, 337–361 (2014). https://doi.org/10.1038/nprot.2014.014

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.014

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing