Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Whole-mount immunostaining of Drosophila skeletal muscle

Abstract

Skeletal muscle undergoes marked functional decay during aging in humans, but the cell biological mechanisms responsible for this process are only partly known. Age-related muscle dysfunction is also a feature of aging in the fruit fly Drosophila melanogaster. Here we describe a detailed step-by-step protocol, which takes place over 3 d, for whole-mount immunostaining of Drosophila flight muscle. The skeletal muscle is fixed and permeabilized without any tissue freezing and dehydration so that antigens are accessible for staining with appropriate antibodies and the overall tissue ultrastructure is well preserved. This technique can be used to identify age-related cellular changes driving skeletal muscle aging and for characterizing models of human muscle disease in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Staining of Drosophila indirect flight muscle from young and old flies.
Figure 2: Staining of Drosophila jump muscle expressing GFP with the BG487-Gal4 driver.

Similar content being viewed by others

References

  1. Nair, K.S. Aging muscle. Am. J. Clin. Nutr. 81, 953–963 (2005).

    Article  CAS  Google Scholar 

  2. Demontis, F., Piccirillo, R., Goldberg, A.L. & Perrimon, N. Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis. Model Mech. 10.1242/dmm.012559 (2013).

  3. Demontis, F., Piccirillo, R., Goldberg, A.L. & Perrimon, N. The influence of skeletal muscle on systemic aging and lifespan. Aging Cell 10.1111/acel.12126 (2013).

  4. Miller, M.S. et al. Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila. Biophys. J. 95, 2391–2401 (2008).

    Article  CAS  Google Scholar 

  5. Rhodenizer, D., Martin, I., Bhandari, P., Pletcher, S.D. & Grotewiel, M. Genetic and environmental factors impact age-related impairment of negative geotaxis in Drosophila by altering age-dependent climbing speed. Exp. Gerontol. 43, 739–748 (2008).

    Article  Google Scholar 

  6. Kenyon, C.J. The genetics of ageing. Nature 464, 504–512 (2010).

    Article  CAS  Google Scholar 

  7. Bate, M. The embryonic development of larval muscles in Drosophila. Development 110, 791–804 (1990).

    CAS  PubMed  Google Scholar 

  8. Demontis, F. & Perrimon, N. Integration of insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 136, 983–993 (2009).

    Article  CAS  Google Scholar 

  9. Abmayr, S.M., Erickson, M.S. & Bour, B.A. Embryonic development of the larval body wall musculature of Drosophila melanogaster. Trends Genet. 11, 153–159 (1995).

    Article  CAS  Google Scholar 

  10. Morriss, G.R. et al. Analysis of skeletal muscle development in Drosophila. Methods Mol. Biol. 798, 127–152 (2012).

    Article  CAS  Google Scholar 

  11. Dutta, D., Anant, S., Ruiz-Gomez, M., Bate, M. & VijayRaghavan, K. Founder myoblasts and fibre number during adult myogenesis in Drosophila. Development 131, 3761–3772 (2004).

    Article  CAS  Google Scholar 

  12. Metzger, T. et al. MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484, 120–124 (2012).

    Article  CAS  Google Scholar 

  13. Cripps, R.M., Lovato, T.L. & Olson, E.N. Positive autoregulation of the myocyte enhancer factor-2 myogenic control gene during somatic muscle development in Drosophila. Dev. Biol. 267, 536–547 (2004).

    Article  CAS  Google Scholar 

  14. Gilsohn, E. & Volk, T. A screen for tendon-specific genes uncovers new and old components involved in muscle-tendon interaction. Fly 4, 149–153 (2010).

    Article  CAS  Google Scholar 

  15. Maqbool, T. & Jagla, K. Genetic control of muscle development: learning from Drosophila. J. Muscle Res. Cell Motil. 28, 397–407 (2007).

    Article  Google Scholar 

  16. Schonbauer, C. et al. Spalt mediates an evolutionarily conserved switch to fibrillar muscle fate in insects. Nature 479, 406–409 (2011).

    Article  Google Scholar 

  17. Piccirillo, R., Demontis, F., Perrimon, N. & Goldberg, A.L. Mechanisms of muscle growth and atrophy in mammals and Drosophila. Dev. Dyn. 10.1002/dvdy.24036 (2013).

  18. Kucherenko, M.M. et al. Paraffin-embedded and frozen sections of Drosophila adult muscles. J. Vis. Exp. 46, e2438 (2010).

    Google Scholar 

  19. Llamusi, B. et al. Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model. Dis. Model Mech. 6, 184–196 (2013).

    Article  CAS  Google Scholar 

  20. Mukherjee, P., Gildor, B., Shilo, B.Z., VijayRaghavan, K. & Schejter, E.D. The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis. Development 138, 2347–2357 (2011).

    Article  CAS  Google Scholar 

  21. Pantoja, M., Fischer, K.A., Ieronimakis, N., Reyes, M. & Ruohola-Baker, H. Genetic elevation of sphingosine 1-phosphate suppresses dystrophic muscle phenotypes in Drosophila. Development 140, 136–146 (2013).

    Article  CAS  Google Scholar 

  22. Demontis, F. & Dahmann, C. Characterization of the Drosophila ortholog of the human Usher Syndrome type 1G protein sans. PLoS ONE 4, e4753 (2009).

    Article  Google Scholar 

  23. Perkins, A.D. et al. Integrin-mediated adhesion maintains sarcomeric integrity. Dev. Biol. 338, 15–27 (2010).

    Article  CAS  Google Scholar 

  24. Pitsouli, C. & Perrimon, N. The homeobox transcription factor cut coordinates patterning and growth during Drosophila airway remodeling. Sci. Signal. 6, ra12 (2013).

    Article  Google Scholar 

  25. Schlichting, K., Wilsch-Brauninger, M., Demontis, F. & Dahmann, C. Cadherin Cad99C is required for normal microvilli morphology in Drosophila follicle cells. J. Cell Sci. 119, 1184–1195 (2006).

    Article  CAS  Google Scholar 

  26. Demontis, F. & Perrimon, N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143, 813–825 (2010).

    Article  CAS  Google Scholar 

  27. Brandt, A., Krohne, G. & Grosshans, J. The farnesylated nuclear proteins KUGELKERN and LAMIN B promote aging-like phenotypes in Drosophila flies. Aging Cell 7, 541–551 (2008).

    Article  CAS  Google Scholar 

  28. Schuster, C.M., Davis, G.W., Fetter, R.D. & Goodman, C.S. Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17, 641–654 (1996).

    Article  CAS  Google Scholar 

  29. Gajewski, K.M. & Schulz, R.A. CF2 represses Actin 88F gene expression and maintains filament balance during indirect flight muscle development in Drosophila. PLoS ONE 5, e10713 (2010).

    Article  Google Scholar 

  30. Budnik, V. et al. Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg. Neuron 17, 627–640 (1996).

    Article  CAS  Google Scholar 

  31. Bryantsev, A.L., Baker, P.W., Lovato, T.L., Jaramillo, M.S. & Cripps, R.M. Differential requirements for myocyte enhancer factor-2 during adult myogenesis in Drosophila. Dev. Biol. 361, 191–207 (2012).

    Article  CAS  Google Scholar 

  32. Bai, J., Hartwig, J.H. & Perrimon, N. SALS, a WH2-domain-containing protein, promotes sarcomeric actin filament elongation from pointed ends during Drosophila muscle growth. Dev. Cell 13, 828–842 (2007).

    Article  CAS  Google Scholar 

  33. Clyne, P.J., Brotman, J.S., Sweeney, S.T. & Davis, G. Green fluorescent protein tagging Drosophila proteins at their native genomic loci with small P elements. Genetics 165, 1433–1441 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Buszczak, M. et al. The Carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007).

    Article  CAS  Google Scholar 

  35. Quinones-Coello, A.T. et al. Exploring strategies for protein trapping in Drosophila. Genetics 175, 1089–1104 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.D. is supported by funding from the American Lebanese Syrian Associated Charities (ALSAC) and the Ellison Medical Foundation New Scholar in Aging award.

Author information

Authors and Affiliations

Authors

Contributions

F.D. and L.C.H. wrote the manuscript.

Corresponding author

Correspondence to Fabio Demontis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, L., Demontis, F. Whole-mount immunostaining of Drosophila skeletal muscle. Nat Protoc 8, 2496–2501 (2013). https://doi.org/10.1038/nprot.2013.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.156

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing