Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Simultaneous isolation of high-quality DNA, RNA, miRNA and proteins from tissues for genomic applications

Abstract

Genomic technologies have revolutionized our understanding of complex Mendelian diseases and cancer. Solid tumors present several challenges for genomic analyses, such as tumor heterogeneity and tumor contamination with surrounding stroma and infiltrating lymphocytes. We developed a protocol to (i) select tissues of high cellular purity on the basis of histological analyses of immediately flanking sections and (ii) simultaneously extract genomic DNA (gDNA), mRNA, noncoding RNA (ncRNA; enriched in miRNA) and protein from the same tissues. After tissue selection, about 12–16 extractions of DNA, RNA or protein can be obtained per day. Compared with other similar approaches, this fast and reliable methodology allowed us to identify mutations in tumors with remarkable sensitivity and to perform integrative analyses of whole-genome and exome data sets, DNA copy numbers (by single-nucleotide polymorphism (SNP) arrays), gene expression data (by transcriptome profiling and quantitative PCR (qPCR)) and protein levels (by western blotting and immunohistochemical analysis) from the same samples. Although we focused on renal cell carcinoma, this protocol may be adapted with minor changes to any human or animal tissue to obtain high-quality and high-yield nucleic acids and proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic workflow for obtaining immediate flanking sections and simultaneous extraction of nucleic acids and proteins from the same samples.
Figure 2: Examples of DNA and RNA quality, and integrity from isolated samples.
Figure 3: Gene expression profiling distinguishes tumors from normal samples with high accuracy.
Figure 4: Genome-wide correlation of DNA copy-number alterations with gene expression profiling in tumors.
Figure 5: Correlation of mutations in DNA with loss of protein expression.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Bamshad, M.J. et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12, 745–755 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Mwenifumbo, J.C. & Marra, M.A. Cancer genome-sequencing study design. Nat. Rev. Genet. 14, 321–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Wheeler, D.A. & Wang, L. From human genome to cancer genome: The first decade. Genome Res. 23, 1054–1062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ley, T.J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Baslan, T. et al. Genome-wide copy number analysis of single cells. Nat. Protoc. 7, 1024–1041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campbell, P.J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hahn, S.A. et al. Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res. 55, 4670–4675 (1995).

    CAS  PubMed  Google Scholar 

  11. Peña-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sivanand, S. et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci. Transl. Med. 4, 137ra75 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Hakimi, A.A. et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin. Cancer Res. 19, 3259–3267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Creighton, C.J. et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  CAS  Google Scholar 

  16. Dalgliesh, G.L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hakimi, A.A. et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur. Urol. 63, 848–854 (2013).

    Article  PubMed  Google Scholar 

  19. Guo, G. et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 44, 17–19 (2012).

    Article  CAS  Google Scholar 

  20. Nickerson, M.L. et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peña-Llopis, S., Christie, A., Xie, X.J. & Brugarolas, J. Cooperation and antagonism among cancer genes: the renal cancer paradigm. Cancer Res. 73, 4173–4179 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boom, R. et al. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gross-Bellard, M., Oudet, P. & Chambon, P. Isolation of high-molecular-weight DNA from mammalian cells. Eur. J. Biochem. 36, 32–38 (1973).

    Article  CAS  PubMed  Google Scholar 

  24. Strauss, W.M. Preparation of genomic DNA from mammalian tissue. Curr. Protoc. Mol. Biol. 42, 2.2.1–2.2.3 (2001).

    Google Scholar 

  25. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Chomczynski, P. & Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532–534, 536-537 (1993).

    CAS  PubMed  Google Scholar 

  28. Eddy, S.R. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2, 919–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Siomi, M.C., Sato, K., Pezic, D. & Aravin, A.A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Vega-Rubin-de-Celis, S. et al. Structural analysis and functional implications of the negative mTORC1 regulator REDD1. Biochemistry 49, 2491–2501 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Kucejova, B. et al. Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol. Cancer Res. 9, 1255–1265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peña-Llopis, S. et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30, 3242–3258 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Clark, S.J., Statham, A., Stirzaker, C., Molloy, P.L. & Frommer, M. DNA methylation: bisulphite modification and analysis. Nat. Protoc. 1, 2353–2364 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Taiwo, O. et al. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat. Protoc. 7, 617–636 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Southern, E. Southern blotting. Nat. Protoc. 1, 518–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wilhelm, B.T., Marguerat, S., Goodhead, I. & Bahler, J. Defining transcribed regions using RNA-seq. Nat. Protoc. 5, 255–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Streit, S., Michalski, C.W., Erkan, M., Kleeff, J. & Friess, H. Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nat. Protoc. 4, 37–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Pall, G.S. & Hamilton, A.J. Improved northern blot method for enhanced detection of small RNA. Nat. Protoc. 3, 1077–1084 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, C.G., Calin, G.A., Volinia, S. & Croce, C.M. MicroRNA expression profiling using microarrays. Nat. Protoc. 3, 563–578 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Carrette, O., Burkhard, P.R., Sanchez, J.C. & Hochstrasser, D.F. State-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research. Nat. Protoc. 1, 812–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Shiio, Y. & Aebersold, R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat. Protoc. 1, 139–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. de Planell-Saguer, M., Rodicio, M.C. & Mourelatos, Z. Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. Nat. Protoc. 5, 1061–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Vega-Rubín-de-Celis and A. Pavía-Jiménez for critically reviewing the manuscript. This work was supported by a Postdoctoral Fellowship of Excellence from Generalitat Valenciana (Spain) (no. BPOSTDOC06/004) to S.P.-L. and the following grants to J.B.: a grant from the Cancer Prevention and Research Institute of Texas (no. RP101075) and an American Cancer Society Research Scholar grant (no. 55927). J.B. is a Virginia Murchison Linthicum Endowed Scholar in Medical Research. The tissue management shared resource was supported in part by the US National Cancer Institute (no. 1P30CA142543).

Author information

Authors and Affiliations

Authors

Contributions

S.P.-L. developed the protocols and performed all the experiments. S.P.-L. and J.B. designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Samuel Peña-Llopis or James Brugarolas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña-Llopis, S., Brugarolas, J. Simultaneous isolation of high-quality DNA, RNA, miRNA and proteins from tissues for genomic applications. Nat Protoc 8, 2240–2255 (2013). https://doi.org/10.1038/nprot.2013.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.141

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing