Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Small-molecule ligand docking into comparative models with Rosetta

Abstract

Structure-based drug design is frequently used to accelerate the development of small-molecule therapeutics. Although substantial progress has been made in X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, the availability of high-resolution structures is limited owing to the frequent inability to crystallize or obtain sufficient NMR restraints for large or flexible proteins. Computational methods can be used to both predict unknown protein structures and model ligand interactions when experimental data are unavailable. This paper describes a comprehensive and detailed protocol using the Rosetta modeling suite to dock small-molecule ligands into comparative models. In the protocol presented here, we review the comparative modeling process, including sequence alignment, threading and loop building. Next, we cover docking a small-molecule ligand into the protein comparative model. In addition, we discuss criteria that can improve ligand docking into comparative models. Finally, and importantly, we present a strategy for assessing model quality. The entire protocol is presented on a single example selected solely for didactic purposes. The results are therefore not representative and do not replace benchmarks published elsewhere. We also provide an additional tutorial so that the user can gain hands-on experience in using Rosetta. The protocol should take 5–7 h, with additional time allocated for computer generation of models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of the Rosetta modeling protocol.
Figure 2: Criterion for selecting regions for de novo loop building.
Figure 3: An overview of Rosetta energetic minimization and all-atom refinement via the relax protocol.
Figure 4: Building loops in comparative models of T4 lysozyme.
Figure 5: Docking MR3 into comparative models of T4 lysozyme.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rohl, C.A., Strauss, C.E.M., Misura, K.M.S. & Baker, D. Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, J.B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Davis, I.W. & Baker, D. RosettaLigand docking with full ligand and receptor flexibility. J. Mol. Biol. 385, 381–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Misura, K.M.S., Chivian, D., Rohl, C.A., Kim, D.E. & Baker, D. Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc. Natl. Acad. Sci. USA 103, 5361–5366 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davis, I.W., Raha, K., Head, M.S. & Baker, D. Blind docking of pharmaceutically relevant compounds using RosettaLigand. Protein Sci. 18, 1998–2002 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das, R. & Baker, D. Macromolecular modeling with Rosetta. Annu. Rev. Biochem. 77, 363–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Kaufmann, K.W., Lemmon, G.H., Deluca, S.L., Sheehan, J.H. & Meiler, J. Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49, 2987–2998 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Rohl, C.A., Strauss, C.E.M., Chivian, D. & Baker, D. Modeling structurally variable regions in homologous proteins with Rosetta. Proteins 55, 656–677 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Meiler, J. & Baker, D. Coupled prediction of protein secondary and tertiary structure. Proc. Natl. Acad. Sci. USA 100, 12105–12110 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yarov-Yarovoy, V., Schonbrun, J. & Baker, D. Multipass membrane protein structure prediction using Rosetta. Proteins 62, 1010–1025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bradley, P. et al. Free modeling with Rosetta in CASP6. Proteins 61 (suppl. 7), 128–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Bradley, P., Misura, K.M.S. & Baker, D. Toward high-resolution de novo structure prediction for small proteins. Science 309, 1868–1871 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Das, R. et al. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 69 (suppl. 8), 118–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Rohl, C.A. Protein structure estimation from minimal restraints using Rosetta. Methods Enzymol. 394, 244–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Lange, O.F. et al. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc. Natl. Acad. Sci. USA 109, 10873–10878 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lange, O.F. & Baker, D. Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation. Proteins 80, 884–895 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Kaufmann, K.W. et al. Structural determinants of species-selective substrate recognition in human and Drosophila serotonin transporters revealed through computational docking studies. Proteins 74, 630–642 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lees-Miller, J.P. et al. Interactions of H562 in the S5 helix with T618 and S621 in the pore helix are important determinants of hERG1 potassium channel structure and function. Biophys. J. 96, 3600–3610 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Keeble, A.H. et al. Experimental and computational analyses of the energetic basis for dual recognition of immunity proteins by colicin endonucleases. J. Mol. Biol. 379, 745–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Fortenberry, C. et al. Exploring symmetry as an avenue to the computational design of large protein domains. J. Am. Chem. Soc. 133, 18026–18029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eswar, N., Eramian, D., Webb, B., Shen, M.-Y. & Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Perola, E., Walters, W.P. & Charifson, P.S. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56, 235–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Carlsson, J. et al. Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat. Chem. Biol. 7, 769–778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ballester, P.J., Westwood, I., Laurieri, N., Sim, E. & Richards, W.G. Prospective virtual screening with Ultrafast Shape Recognition: the identification of novel inhibitors of arylamine N-acetyltransferases. J. R. Soc. Interface 7, 335–342 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Schneider, G. & Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov. 4, 649–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Schneider, G. et al. Voyages to the (un)known: adaptive design of bioactive compounds. Trends Biotechnol. 27, 18–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Meiler, J. & Baker, D. ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65, 538–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Lemmon, G. & Meiler, J. Rosetta Ligand docking with flexible XML protocols. Methods Mol. Biol. 819, 143–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laskowski, R.A. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph 13, 323–330, (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, B. & Schroeder, M. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct. Biol. 6, 19 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kalidas, Y. & Chandra, N. PocketDepth: a new depth-based algorithm for identification of ligand binding sites in proteins. J. Struct. Biol. 161, 31–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Dunbrack, R.L. & Karplus, M. Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J. Mol. Biol. 230, 543–574 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Z. & Scheraga, H. A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. USA 84, 6611–6615 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simons, K.T., Kooperberg, C., Huang, E. & Baker, D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953).

    Article  CAS  Google Scholar 

  37. Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W. & Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins 52, 609–623 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Friesner, R.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Ewing, T.J., Makino, S., Skillman, A.G. & Kuntz, I.D. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 15, 411–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Gohlke, H., Hendlich, M. & Klebe, G. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295, 337–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Kaufmann, K.W. & Meiler, J. Using RosettaLigand for small molecule docking into comparative models. PLoS ONE 7, e50769 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mobley, D.L. et al. Predicting absolute ligand binding free energies to a simple model site. J. Mol. Biol. 371, 1118–1134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mooers, B.H.M. & Matthews, B.W. Extension to 2268 atoms of direct methods in the ab initio determination of the unknown structure of bacteriophage P22 lysozyme. Acta Crystallogr. D Biol. Crystallogr. 62, 165–176 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Z. et al. Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res. 26, 3986–3990 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Eddy, S.R. A new generation of homology search tools based on probabilistic inference. Genome Inform. 23, 205–211 (2009).

    PubMed  Google Scholar 

  49. Eddy, S.R. Accelerated profile HMM searches. PloS Comput. Biol. 7, e1002195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kelley, L.A. & Sternberg, M.J.E. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Canutescu, A.A. & Dunbrack, R.L. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12, 963–972 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mandell, D.J., Coutsias, E.A. & Kortemme, T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6, 551–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Coutsias, E.A., Seok, C., Jacobson, M.P. & Dill, K.A. A kinematic view of loop closure. J. Comput. Chem. 25, 510–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Gront, D., Kulp, D.W., Vernon, R.M., Strauss, C.E.M. & Baker, D. Generalized fragment picking in Rosetta: design, protocols and applications. PLoS ONE 6, e23294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, G. & Dunbrack, R.L. PISCES: a protein sequence culling server. Bioinformatics 19, 1589–1591 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Leaver-Fay, A., Kuhlman, B. & Snoeyink, J. Rotamer-pair energy calculations using a trie data structure. Lect. Notes Comput. Sci. 3692, 389–400 (2005).

    Article  CAS  Google Scholar 

  57. Jones, D., Taylor, W. & Thorton, J. A New approach to protein fold recognition. Nature 358, 86–89 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Raman, S. et al. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77, 89–99 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hirst, S.J., Alexander, N., McHaourab, H.S. & Meiler, J. RosettaEPR: an integrated tool for protein structure determination from sparse EPR data. J. Struct. Biol. 173, 506–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Meiler, J. & Baker, D. The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining protein structure prediction methods with NMR spectroscopy. J. Magn. Reson. 173, 310–316 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Alexander, N., Bortolus, M., Al-Mestarihi, A., Mchaourab, H. & Meiler, J. De novo high-resolution protein structure determination from sparse spin-labeling EPR data. Structure 16, 181–195 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. DiMaio, F. et al. Improved molecular replacement by density- and energy-guided protein structure optimization. Nature 473, 540–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shen, Y. et al. De novo structure generation using chemical shifts for proteins with high-sequence identity but different folds. Protein Sci. 19, 349–356 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Herzog, F. et al. Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337, 1348–1352 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Grishaev, A., Guo, L., Irving, T. & Bax, A. Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling. J. Am. Chem. Soc. 132, 15484–15486 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pandit, D. et al. Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. J. Mol. Recognit. 25, 114–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Rathmann, D. et al. Ligand-mimicking receptor variant discloses binding and activation mode of prolactin-releasing peptide. J. Biol. Chem. 287, 32181–32194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Combs, S., Kaufmann, K., Field, J.R., Bakely, R.D. & Meiler, J. Y95 and E444 interaction required for high-affinity S-citalopram binding in the human serotonin transporter. ACS Chem. Neurosci. 2, 75–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Nannemann, D.P., Kaufmann, K.W., Meiler, J. & Bachmann, B.O. Design and directed evolution of a dideoxy purine nucleoside phosphorylase. Protein Eng. Des. Sel. 23, 607–616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leach, A.R., Shoichet, B.K. & Peishoff, C.E. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem. 49, 5851–5855 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Smith, J.A., Vanoye, C.G., George, A.L., Meiler, J. & Sanders, C.R. Structural models for the KCNQ1 voltage-gated potassium channel. Biochemistry 46, 14141–14152 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Ward, J.J., McGuffin, L.J., Buxton, B.F. & Jones, D.T. Secondary structure prediction with support vector machines. Bioinformatics 19, 1650–1655 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Leman, J.K., Koehler, J., Mueller, R., Karakas, M., Woetzel, N. & Meiler, J. Simultaneous prediction of protein secondary structure and transmembrane spans. Proteins http://dx.doi.org/10.1002/prot.24258 (10 April 2013).

  76. Wang, C., Bradley, P. & Baker, D. Protein-protein docking with backbone flexibility. J. Mol. Biol. 373, 503–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Qian, B. et al. High-resolution structure prediction and the crystallographic phase problem. Nature 450, 259–264 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lemmon, G., Kaufmann, K. & Meiler, J. Prediction of HIV-1 protease/inhibitor affinity using RosettaLigand. Chem. Biol. Drug Des. 79, 888–896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Wass, M.N., Kelley, L.A. & Sternberg, M.J.E. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 38, W469–W473 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morris, G.M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Case, D.A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alexander, N., Woetzel, N. & Meiler, J. Bcl::Cluster: A method for clustering biological molecules coupled with visualization in the Pymol molecular graphics system. Computational Advances in Bio and Medical Sciences (ICCABS), 2011 IEEE 1st International Conference on, 13–18 (2011).

  84. Dunbrack, R.L. & Cohen, F.E. Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci. 6, 1661–1681 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Simons, K.T. et al. Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34, 82–95 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Kuhlman, B. & Baker, D. Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. USA 97, 10383–10388 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Neria, E., Fischer, S. & Karplus, M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 105, 1902–1921 (1996).

    Article  CAS  Google Scholar 

  88. Lazaridis, T. & Karplus, M. Effective energy function for proteins in solution. Proteins 35, 133–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Gordon, D.B., Marshall, S.A. & Mayo, S.L. Energy functions for protein design. Curr. Opin. Struct. Biol. 9, 509–513 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Wedemeyer, W.J. & Baker, D. Efficient minimization of angle-dependent potentials for polypeptides in internal coordinates. Proteins 53, 262–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Ramachandran, G.N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963).

    Article  CAS  PubMed  Google Scholar 

  92. Fleishman, S.J. et al. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS ONE 6, e20161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Smith, as well as R. Levinson, for testing the protocol and for their helpful comments. Work in the Meiler laboratory is supported through grants from the National Institutes of Health (R01 GM080403, R01 MH090192) and the National Science Foundation (Career 0742762).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. All authors wrote substantial portions of the main text, the figures and the supplementary information. S.A.C. proposed the composition of the work for the benefit of the scientific community, tested the presented protocol and managed submission. S.L.D. wrote instructions on how to install the software, generated the comparative models, wrote data-processing scripts and managed references. S.H.D. wrote the supplementary glossary and was responsible for overall editing of the work. G.H.L. wrote the RosettaLigand program in its present form. D.P.N. carefully read through the manuscript for consistency and accuracy and helped in the analysis of the generated models. E.D.N. also generated comparative models, performed all of the ligand docking and performed the data analysis. J.R.W. contributed several figures, data-processing scripts, specialty movers, wrote large sections of the tutorial and managed references. J.H.S. tested the protocol, wrote the Troubleshooting section and edited the manuscript for clarity. J.M. helped define the scope of the work and guided the process of establishing the protocol.

Corresponding author

Correspondence to Jens Meiler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Discussion

Discussion of clustering using Rosetta, Using Constraints as Filters in RosettaScripts, Installing Rosetta 3.4, Testing Rosetta, and Glossary. (PDF 676 kb)

Supplementary Data

A zipped file that contains example input files, command lines, and output files that the user can download. This tutorial is provided to allow the user to gain handson experience with docking small molecules into comparative models with Rosetta. (ZIP 16433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combs, S., DeLuca, S., DeLuca, S. et al. Small-molecule ligand docking into comparative models with Rosetta. Nat Protoc 8, 1277–1298 (2013). https://doi.org/10.1038/nprot.2013.074

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.074

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research