Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Femtosecond optical transfection of individual mammalian cells

Abstract

Laser-mediated gene transfection into mammalian cells has recently emerged as a powerful alternative to more traditional transfection techniques. In particular, the use of a femtosecond-pulsed laser operating in the near-infrared (NIR) region has been proven to provide single-cell selectivity, localized delivery, low toxicity and consistent performance. This approach can easily be integrated with advanced multimodal live-cell microscopy and micromanipulation techniques. The efficiency of this technique depends on an understanding by the user of both biology and physics. Therefore, in this protocol we discuss the subtleties that apply to both fields, including sample preparation, alignment and calibration of laser optics and their integration into a microscopy platform. The entire protocol takes 5 d to complete, from the initial setup of the femtosecond optical transfection system to the final stage of fluorescence imaging to assay for successful expression of the gene of interest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Experimental setup for the generation of a Bessel beam.
Figure 3: Back-reflection of the NIR beam from the glass-air interface on the coverslip or bottom of a Petri dish.
Figure 4: Examples of transient gas bubbles formed on cellular membrane.
Figure 5: Typical images acquired in the optoinjection efficiency and viability study.
Figure 6: Examples of cell-targeted optical transfection of genes.

Similar content being viewed by others

References

  1. Kawabata, I., Umeda, T., Yamamoto, K. & Okabe, S. Electroporation-mediated gene transfer system applied to cultured CNS neurons. Neuroreport 15, 971–975 (2004).

    Article  CAS  Google Scholar 

  2. O'Brien, J.A. & Lummis, S.C. Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun. Nat. Protoc. 1, 1517–1521 (2006).

    Article  CAS  Google Scholar 

  3. Hsu, C.Y.M. & Uludag, H. A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine. Nat. Protoc. 7, 935–945 (2012).

    Article  CAS  Google Scholar 

  4. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

  5. Zhang, Y. & Yu, L.C. Microinjection as a tool of mechanical delivery. Curr. Opin. Biotech. 19, 506–510 (2008).

    Article  CAS  Google Scholar 

  6. Hewapathirane, D.S. & Haas, K. Single cell electroporation in vivo within the intact developing brain. JoVE 17, e705 (2008).

    Google Scholar 

  7. Judkewitz, B., Rizzi, M., Kitamura, K. & Hausser, M. Targeted single-cell electroporation of mammalian neurons in vivo. Nat. Protoc. 4, 862–869 (2009).

    Article  CAS  Google Scholar 

  8. Stevenson, D.J., Gunn-Moore, F.J., Campbell, P. & Dholakia, K. Single cell optical transfection. J. R. Soc. Interface 7, 863–871 (2010).

    Article  CAS  Google Scholar 

  9. Hosokawa, Y. et al. Gene delivery process in a single animal cell after femtosecond laser microinjection. Appl. Surf. Sci. 255, 9880–9884 (2009).

    Article  CAS  Google Scholar 

  10. Hosokawa, Y., Ochi, H., Iino, T., Hiraoka, A. & Tanaka, M. Photoporation of biomolecules into single cells in living vertebrate embryos induced by a femtosecond laser amplifier. PLoS ONE 6, e27677 (2011).

    Article  CAS  Google Scholar 

  11. König, K. et al. Sub-100 nm material processing and imaging with a sub-15 femtosecond laser scanning microscope. J. Laser Appl. 24, 042009 (2012).

    Article  Google Scholar 

  12. Uchugonova, A. et al. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses. J. Biomed. Opt. 17, 101502 (2012).

    Article  Google Scholar 

  13. Uchugonova, A., Koenig, K., Bueckle, R., Isemann, A. & Tempea, G. Targeted transfection of stem cells with sub-20 femtosecond laser pulses. Opt. Express 16, 9357–9364 (2008).

    Article  CAS  Google Scholar 

  14. Rudhall, A.P. et al. Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells. Sci. Rep. 2, 858 (2012).

    Article  Google Scholar 

  15. Vogel, A., Noack, J., Huttman, G. & Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B-Lasers O. 81, 1015–1047 (2005).

    Article  CAS  Google Scholar 

  16. Steinmeyer, J.D. et al. Construction of a femtosecond laser microsurgery system. Nat. Protoc. 5, 395–407 (2010).

    Article  CAS  Google Scholar 

  17. Tirlapur, U.K. & König, K. Targeted transfection by femtosecond laser. Nature 418, 290–291 (2002).

    Article  CAS  Google Scholar 

  18. Koenig, K. & Tirlapur, U.K. Method for transferring molecules in vital cells by means of laser beams and arrangement for carrying out said method. US Patent 7,892,837 (2011).

  19. Mthunzi, P., Dholakia, K. & Gunn-Moore, F. Photo-transfection of mammalian cells using femtosecond laser pulses: optimisation and applicability to stem cell differentiation. J. Biomed. Opt. 15, 041507 (2010).

    Article  Google Scholar 

  20. Kohli, V. et al. An alternative method for delivering exogenous material into developing zebrafish embryos. Biotechnol. Bioeng. 98, 1230–1241 (2007).

    Article  CAS  Google Scholar 

  21. Gu, L. & Mohanty, S.K. Targeted microinjection into cells and retina using optoporation. J. Biomed. Opt. 16, 128003 (2011).

    Article  Google Scholar 

  22. Barrett, L.E. et al. Region-directed phototransfection reveals the functional significance of a dendritically synthesized transcription factor. Nat. Methods 3, 455–460 (2006).

    Article  CAS  Google Scholar 

  23. Sul, J.-Y. et al. Transcriptome transfer produces a predictable cellular phenotype. Proc. Natl. Acad. Sci. USA 106, 7624–7629 (2009).

    Article  CAS  Google Scholar 

  24. Zeira, E. et al. Femtosecond laser: a new intradermal DNA delivery method for efficient, long-term gene expression and genetic immunization. FASEB J. 21, 3522–3533 (2007).

    Article  Google Scholar 

  25. Zeira, E. et al. Femtosecond infrared laser—an efficient and safe in vivo gene delivery system for prolonged expression. Mol. Ther. 8, 342–350 (2003).

    Article  CAS  Google Scholar 

  26. Torres-Mapa, M.L. et al. Integrated holographic system for all-optical manipulation of developing embryos. Biomed. Opt. Express 2, 1564–1575 (2011).

    Article  Google Scholar 

  27. Antkowiak, M., Torres-Mapa, M.L., Gunn-Moore, F. & Dholakia, K. Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection. J. Biophotonics 3, 696–705 (2010).

    Article  CAS  Google Scholar 

  28. Baumgart, J. et al. Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells. Opt. Express 16, 3021–3031 (2008).

    Article  CAS  Google Scholar 

  29. Tirlapur, U.K., König, K., Peuckert, C., Krieg, R. & Halbhuber, K.J. Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp. Cell Res. 263, 88–97 (2001).

    Article  CAS  Google Scholar 

  30. Lei, M., Xu, H., Yang, H. & Yao, B. Femtosecond laser-assisted microinjection into living neurons. J. Neurosci. Meth. 174, 215–218 (2008).

    Article  Google Scholar 

  31. Marchington, R.F., Arita, Y., Tsampoula, X., Gunn-Moore, F.J. & Dholakia, K. Optical injection of mammalian cells using a microfluidic platform. Biomed. Opt. Express 1, 527–536 (2010).

    Article  Google Scholar 

  32. Rendall, H.A. et al. High-throughput optical injection of mammalian cells using a Bessel light beam. Lab Chip 12, 4816–4820 (2012).

    Article  CAS  Google Scholar 

  33. Foldes-Papp, Z. et al. Trafficking of mature miRNA-122 into the nucleus of live liver cells. Curr. Pharm. Biotechnol. 10, 569–578 (2009).

    Article  Google Scholar 

  34. Peng, C., Palazzo, R.E. & Wilke, I. Laser intensity dependence of femtosecond near-infrared optoinjection. Phys. Rev. E 75, 041903 (2007).

    Article  Google Scholar 

  35. Stracke, F., Rieman, I. & König, K. Optical nanoinjection of macromolecules into vital cells. J. Photoch. Photobio. B 81, 136–142 (2005).

    Article  CAS  Google Scholar 

  36. Kohli, V., Acker, J.P. & Elezzabi, A.Y. Reversible permeabilization using high-intensity femtosecond laser pulses: Applications to biopreservation. Biotechnol. Bioeng. 92, 889–899 (2005).

    Article  CAS  Google Scholar 

  37. Brown, C.T.A. et al. Enhanced operation of femtosecond lasers and applications in cell transfection. J. Biophotonics 1, 183–199 (2008).

    Article  CAS  Google Scholar 

  38. McDougall, C., Stevenson, D.J., Brown, C.T.A., Gunn-Moore, F. & Dholakia, K. Targeted optical injection of gold nanoparticles into single mammalian cells. J. Biophotonics 2, 736–743 (2009).

    Article  CAS  Google Scholar 

  39. Tsampoula, X. et al. Fibre based cellular transfection. Opt. Express 16, 17007–17013 (2008).

    Article  CAS  Google Scholar 

  40. Ma, N., Ashok, P.C., Stevenson, D.J., Gunn-Moore, F.J. & Dholakia, K. Integrated optical transfection system using a microlens fiber combined with microfluidic gene delivery. Biomed. Opt. Express 1, 694–705 (2010).

    Article  CAS  Google Scholar 

  41. Ma, N., Gunn-Moore, F. & Dholakia, K. Optical transfection using an endoscope-like system. J. Biomed. Opt. 16, 401–407 (2011).

    Article  Google Scholar 

  42. Terakawa, M. & Tanaka, Y. Dielectric microsphere mediated transfection using a femtosecond laser. Opt. Lett. 36, 2877–2879 (2011).

    Article  CAS  Google Scholar 

  43. Terakawa, M., Tsunoi, Y. & Mitsuhashi, T. In vitro perforation of human epithelial carcinoma cell with antibody-conjugated biodegradable microspheres illuminated by a single 80 femtosecond near-infrared laser pulse. Int. J. Nanomed. 7, 2653–2666 (2012).

    Article  CAS  Google Scholar 

  44. Chakravarty, P., Qian, W., El-Sayed, M.A. & Prausnitz, M.R. Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat. Nanotechnol. 5, 607–611 (2010).

    Article  CAS  Google Scholar 

  45. Baumgart, J. et al. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells. Biomaterials 33, 2345–2350 (2012).

    Article  CAS  Google Scholar 

  46. Kuetemeyer, K., Baumgart, J., Lubatschowski, H. & Heisterkamp, A. Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue. Appl. Phys. B-Lasers O. 97, 695–699 (2009).

    Article  CAS  Google Scholar 

  47. Svoboda, K. & Block, S.M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    Article  CAS  Google Scholar 

  48. Lee, W.M., Reece, P.J., Marchington, R.F., Metzger, N.K. & Dholakia, K. Construction and calibration of an optical trap on a fluorescence optical microscope. Nat. Protoc. 2, 3226–3238 (2007).

    Article  CAS  Google Scholar 

  49. Čiz`már, T. et al. Generation of multiple Bessel beams for a biophotonics workstation. Opt. Express 16, 14024–14035 (2008).

    Article  Google Scholar 

  50. Tsampoula, X. et al. Femtosecond cellular transfection using a nondiffracting light beam. Appl. Phys. Lett. 91, 053902 (2007).

    Article  Google Scholar 

  51. Brunner, S. et al. Cell cycle dependence of gene transfer by lipoplex polyplex and recombinant adenovirus. Gene Ther. 7, 401–407 (2000).

    Article  CAS  Google Scholar 

  52. Lechardeur, D. et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6, 482–497 (1999).

    Article  CAS  Google Scholar 

  53. von Kockritz-Blickwede, M., Chow, O.A. & Nizet, V. Fetal calf serum contains heat-stable nucleases that degrade neutrophil extracellular traps. Blood 114, 5245–5246 (2009).

    Article  CAS  Google Scholar 

  54. Praveen, B.B., Stevenson, D.J., Antkowiak, M., Dholakia, K. & Gunn-Moore, F.J. Enhancement and optimization of plasmid expression in femtosecond optical transfection. J. Biophotonics 4, 229–235 (2011).

    Article  CAS  Google Scholar 

  55. Stevenson, D. et al. Femtosecond optical transfection of cells: viability and efficiency. Opt. Express 14, 7125–7133 (2006).

    Article  CAS  Google Scholar 

  56. König, K., Riemann, I., Stracke, F. & Le Harzic, R. Nanoprocessing with nanojoule near-infrared femtosecond laser pulses. Med. Laser Appl. 20, 169–184 (2005).

    Article  Google Scholar 

  57. Arlt, J., Dholakia, K., Soneson, J. & Wright, E.M. Optical dipole traps and atomic waveguides based on Bessel light beams. Phys. Rev. A 63, 063602 (2001).

    Article  Google Scholar 

  58. Čiz`már, T. & Dholakia, K. Tunable Bessel light modes: engineering the axial propagation. Opt. Express 17, 15558–15570 (2009).

    Article  Google Scholar 

  59. Arlt, J., Garces-Chavez, V., Sibbett, W. & Dholakia, K. Optical micromanipulation using a Bessel light beam. Opt. Commun. 197, 239–245 (2001).

    Article  CAS  Google Scholar 

  60. Tsukakoshi, M., Kurata, S., Nomiya, Y., Ikawa, Y. & Kasuya, T. A novel method of DNA transfection by laser microbeam cell surgery. Appl. Phys. B-Photo. 35, 135–140 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the UK Engineering Physical Sciences Research Council (EPSRC). We would like to acknowledge Roslin Cellab for providing the human embryonic stem cells through a SUPA start-up grant. M.A. acknowledges the support of an EPSRC-funded 'Rising Star' Fellowship and the SULSA. K.D. is a Royal Society Wolfson Merit Award holder. F.J.G.-M. acknowledges the support of the R.S. MacDonald Charitable Trust, SU2P and The 'BRAINS' 600th anniversary appeal. Both K.D. and F.J.G.-M. acknowledge the support of E. Killick. We are grateful to all current and past members of the Biophotonics group at University of St. Andrews who contributed to the development and optimization of this protocol.

Author information

Authors and Affiliations

Authors

Contributions

M.A. and M.L.T.-M. obtained the results reported in the protocol and wrote the manuscript. M.A., M.L.T.-M., D.J.S., K.D. and F.J.G.-M. edited and approved the manuscript. K.D. and F.J.G.-M. led the project.

Corresponding authors

Correspondence to Kishan Dholakia or Frank J Gunn-Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Examples of transient gas bubbles formed on cellular membrane. Left: a long-lasting bubble indicates an irradiation overdose. Right: a small (<2 μm) bubble indicates good beam alignment and correct irradiation parameters. (AVI 11528 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antkowiak, M., Torres-Mapa, M., Stevenson, D. et al. Femtosecond optical transfection of individual mammalian cells. Nat Protoc 8, 1216–1233 (2013). https://doi.org/10.1038/nprot.2013.071

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.071

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing