Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast

Abstract

Optical sensors allow dynamic quantification of metabolite levels with subcellular resolution. Here we describe protocols for analyzing cytosolic glucose levels in yeast using genetically encoded Förster resonance energy transfer (FRET) sensors. FRET glucose sensors with different glucose affinities (Kd) covering the low nano- to mid- millimolar range can be targeted genetically to the cytosol or to subcellular compartments. The sensors detect the glucose-induced conformational change in the bacterial periplasmic glucose/galactose binding protein MglB using FRET between two fluorescent protein variants. Measurements can be performed with a single sensor or multiple sensors in parallel. In one approach, cytosolic glucose accumulation is measured in yeast cultures in a 96-well plate using a fluorimeter. Upon excitation of the cyan fluorescent protein (CFP), emission intensities of CFP and YFP (yellow fluorescent protein) are captured before and after glucose addition. FRET sensors provide temporally resolved quantitative data of glucose for the compartment of interest. In a second approach, reversible changes of cytosolic free glucose are measured in individual yeast cells trapped in a microfluidic platform, allowing perfusion of different solutions while FRET changes are monitored in a microscope setup. By using the microplate fluorimeter protocol, 96 cultures can be measured in less than 1 h; analysis of single cells of a single genotype can be completed in <2 h. FRET-based analysis has been performed with glucose, maltose, ATP and zinc sensors, and it can easily be adapted for high-throughput screening using a wide spectrum of sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantitative in vivo measurement of glucose in yeast cells.
Figure 2: Schematic representation of Step 17 in the procedure.
Figure 3: Y04C microfluidic CellASIC plate.
Figure 4: Real-time in vivo measurement of glucose in yeast cells.

Similar content being viewed by others

References

  1. Bermejo, C. et al. In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast. Biochem. J. 438, 1–10 (2011).

    Article  CAS  Google Scholar 

  2. Okumoto, S., Takanaga, H. & Frommer, W.B. Quantitative imaging for discovery and assembly of the metabo-regulome. New Phytol. 180, 271–295 (2008).

    Article  CAS  Google Scholar 

  3. Frommer, W.B., Davidson, M.W. & Campbell, R.E. Genetically encoded biosensors based on engineered fluorescent proteins. Chem. Soc. Rev. 38, 2833–2841 (2009).

    Article  CAS  Google Scholar 

  4. Bermejo, C., Haerizadeh, F., Takanaga, H., Chermak, D. & Frommer, W.B. Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors. Biochem. J. 432, 399–406 (2010).

    Article  CAS  Google Scholar 

  5. Kaper, T. et al. Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol. 5, e257 (2007).

    Article  Google Scholar 

  6. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  7. Chaudhuri, B. et al. Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. Plant J. 56, 948–962 (2008).

    Article  CAS  Google Scholar 

  8. Chen, L.Q. et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532 (2010).

    Article  CAS  Google Scholar 

  9. Kaper, T., Lager, I., Looger, L.L., Chermak, D. & Frommer, W.B. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnol. Biofuels 1, 11 (2008).

    Article  Google Scholar 

  10. Deuschle, K. et al. Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18, 2314–2325 (2006).

    Article  CAS  Google Scholar 

  11. Chaudhuri, B., Hormann, F. & Frommer, W.B. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. J. Exp. Bot. 62, 2411–2417 (2011).

    Article  CAS  Google Scholar 

  12. Takanaga, H. & Frommer, W.B. Facilitative plasma membrane transporters function during ER transit. FASEB J. 24, 2849–2858 (2010).

    Article  CAS  Google Scholar 

  13. Okumoto, S. et al. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc. Natl. Acad. Sci. USA 102, 8740–8745 (2005).

    Article  CAS  Google Scholar 

  14. Hires, S.A., Zhu, Y. & Tsien, R.Y. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc. Natl. Acad. Sci. USA 105, 4411–4416 (2008).

    Article  CAS  Google Scholar 

  15. Dulla, C. et al. Imaging of glutamate in brain slices using FRET sensors. J. Neurosci. Meth. 168, 306–319 (2008).

    Article  CAS  Google Scholar 

  16. Allen, G.J. et al. Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289, 2338–2342 (2000).

    Article  CAS  Google Scholar 

  17. Allen, G.J. et al. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411, 1053–1057 (2001).

    Article  CAS  Google Scholar 

  18. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583–594 (2000).

    Article  CAS  Google Scholar 

  19. Lütcke, H. et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural Circ. 4, 9 (2010).

    Google Scholar 

  20. Hendel, T. et al. Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J. Neurosci. 28, 7399–7411 (2008).

    Article  CAS  Google Scholar 

  21. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  Google Scholar 

  22. Fehr, M., Frommer, W.B. & Lalonde, S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc. Natl. Acad. Sci. USA 99, 9846–9851 (2002).

    Article  CAS  Google Scholar 

  23. Ha, J.S. et al. Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 73, 7408–7414 (2007).

    Article  CAS  Google Scholar 

  24. Fehr, M., Lalonde, S., Ehrhardt, D.W. & Frommer, W.B. Live imaging of glucose homeostasis in nuclei of COS-7 cells. J. Fluoresc. 14, 603–609 (2004).

    Article  CAS  Google Scholar 

  25. Qiao, W., Mooney, M., Bird, A.J., Winge, D.R. & Eide, D.J. Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET. Proc. Natl. Acad. Sci. USA 103, 8674–8679 (2006).

    Article  CAS  Google Scholar 

  26. Hou, B.-H. et al. Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat. Protoc. 6, 1818–1833 (2011).

    Article  CAS  Google Scholar 

  27. Lager, I., Fehr, M., Frommer, W.B. & Lalonde, S. Development of a fluorescent nanosensor for ribose. FEBS Lett. 553, 85–89 (2003).

    Article  CAS  Google Scholar 

  28. Fehr, M., Lalonde, S., Lager, I., Wolff, M.W. & Frommer, W.B. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J. Biol. Chem. 278, 19127–19133 (2003).

    Article  CAS  Google Scholar 

  29. Deuschle, K. et al. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci. 14, 2304–2314 (2005).

    Article  CAS  Google Scholar 

  30. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotech. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  31. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    Article  CAS  Google Scholar 

  32. Takanaga, H., Chaudhuri, B. & Frommer, W.B. GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim. Biophys. Acta 1778, 1091–1099 (2008).

    Article  CAS  Google Scholar 

  33. Schuetz, R., Kuepfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 (2007).

    Article  Google Scholar 

  34. Zamboni, N., Fischer, E. & Sauer, U. FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinform. 6, 209 (2005).

    Article  Google Scholar 

  35. Niittylae, T., Chaudhuri, B., Sauer, U. & Frommer, W.B. Comparison of quantitative metabolite imaging tools and carbon-13 techniques for fluxomics. Methods Mol. Biol. 553, 355–372 (2009).

    Article  CAS  Google Scholar 

  36. Wiechert, W., Schweissgut, O., Takanaga, H. & Frommer, W.B. Fluxomics: mass spectrometry versus quantitative imaging. Curr. Opin. Plant Biol. 10, 323–330 (2007).

    Article  CAS  Google Scholar 

  37. Williams, D.A., Fogarty, K.E., Tsien, R.Y. & Fay, F.S. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318, 558–561 (1985).

    Article  CAS  Google Scholar 

  38. Peterka, D.S., Takahashi, H. & Yuste, R. Imaging voltage in neurons. Neuron 69, 9–21 (2011).

    Article  CAS  Google Scholar 

  39. Yoshioka, K. et al. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim. Biophys. Acta 1289, 5–9 (1996).

    Article  Google Scholar 

  40. Paredes, R.M., Etzler, J.C., Watts, L.T., Zheng, W. & Lechleiter, J.D. Chemical calcium indicators. Methods 46, 143–151 (2008).

    Article  CAS  Google Scholar 

  41. Trapani, V. et al. Intracellular magnesium detection: imaging a brighter future. Analyst 135, 1855–1866 (2010).

    Article  CAS  Google Scholar 

  42. Tomos, A.D. & Sharrock, R.A. Cell sampling and analysis (SiCSA): metabolites measured at single cell resolution. J. Exp. Bot. 52, 623–630 (2001).

    Article  CAS  Google Scholar 

  43. Ebert, B. et al. Metabolic profiling of Arabidopsis thaliana epidermal cells. J. Exp. Bot. 61, 1321–1335 (2010).

    Article  CAS  Google Scholar 

  44. MacDougall, A.J., Parker, R. & Selvendran, R.R. The use of nonaqueous fractionation to assess the ionic composition of the apoplast during fruit ripening. Plant Physiol. 108, 1679–1689 (1995).

    Article  CAS  Google Scholar 

  45. Borner, S. et al. FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat. Protoc. 6, 427–438 (2011).

    Article  Google Scholar 

  46. Herbst, K.J., Allen, M.D. & Zhang, J. Luminescent kinase activity biosensors based on a versatile bimolecular switch. J. Am. Chem. Soc. 133, 5676–5679 (2011).

    Article  CAS  Google Scholar 

  47. Hahn, K. Monitoring signaling processes in living cells using biosensors. Science's STKE 2003, tr5 (2003).

    PubMed  Google Scholar 

  48. Esposito, A., Gralle, M., Dani, M.A., Lange, D. & Wouters, F.S. pHlameleons: a family of FRET-based protein sensors for quantitative pH imaging. Biochemistry 47, 13115–13126 (2008).

    Article  CAS  Google Scholar 

  49. Violin, J.D., Zhang, J., Tsien, R.Y. & Newton, A.C. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J. Cell Biol. 161, 899–909 (2003).

    Article  CAS  Google Scholar 

  50. DiPilato, L.M., Cheng, X. & Zhang, J. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc. Natl. Acad. Sci. USA 101, 16513–16518 (2004).

    Article  CAS  Google Scholar 

  51. Sakai, R., Repunte-Canonigo, V., Raj, C.D. & Knöpfel, T Design and charaterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur. J. Neurosci. 13, 2314–2318 (2001).

    Article  CAS  Google Scholar 

  52. Tsutsui, H., Higashijima, S., Miyawaki, A. & Okamura, Y Visualizing voltage dynamics in zebrafish heart. J. Physiol. 588, 2017–2021 (2010).

    Article  CAS  Google Scholar 

  53. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–466 (2010).

    Article  CAS  Google Scholar 

  54. Bittner, C.X. et al. High resolution measurement of the glycolytic rate. Front. Neuroenerg. 2, pii: 26 (2010).

    Article  Google Scholar 

  55. Tsutsui, H., Karasawa, S., Okamura, Y. & Miyawaki, A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat. Methods 5, 683–685 (2008).

    Article  CAS  Google Scholar 

  56. Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotech. 22, 445–449 (2004).

    Article  CAS  Google Scholar 

  57. Ai, H.W., Olenych, S.G., Wong, P., Davidson, M.W. & Campbell, R.E. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol. 6, 13 (2008).

    Article  Google Scholar 

  58. Hara, M. et al. Imaging endoplasmic reticulum calcium with a fluorescent biosensor in transgenic mice. Am. J. Physiol. Cell Physiol. 287, C932–C938 (2004).

    Article  CAS  Google Scholar 

  59. Chen, D.C., Yang, B.C. & Kuo, T.T. One-step transformation of yeast in stationary phase. Curr. Genet. 21, 83–84 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was made possible by grants to W.B.F. from National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases; 1RO1DK079109). Frommer lab members are acknowledged for helpful discussions in the preparation of this protocol.

Author information

Authors and Affiliations

Authors

Contributions

C.B., F.H., H.T. and W.B.F. designed research; C.B., F.H., H.T. and D.C. performed research; C.B., F.H., H.T., D.C. and W.B.F. analyzed the data; C.B., F.H. and W.B.F. wrote the paper.

Corresponding author

Correspondence to Wolf B Frommer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

A data set of CFP and YFP variant intensities over time are located in the A-H columns of the spreadsheet. Background subtraction and ratios are calculated in the columns J-O of the spreadsheet. Columns P-V include the reorganized ratios over the time for the same culture. Normalization of the ratios is performed in columns X-AD. Graphs are displayed in columns AE-AK of the spreadsheet. Average of three different transformants and graphs are shown in columns AM-BA of the spreadsheet. (XLS 367 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermejo, C., Haerizadeh, F., Takanaga, H. et al. Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat Protoc 6, 1806–1817 (2011). https://doi.org/10.1038/nprot.2011.391

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.391

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing