Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Triggering cell detachment from patterned electrode arrays by programmed subcellular release

Abstract

Programmed subcellular release is an in vitro technique for the quantitative study of cell detachment. The dynamics of cell contraction are measured by releasing cells from surfaces to which they are attached with spatial and temporal control. Release of subcellular regions of cells is achieved by plating cells on an electrode array created by standard microfabrication methods. The electrodes are then biochemically functionalized with an arginine-glycine-aspartic acid (RGD)-terminated thiol. Application of a voltage pulse results in electrochemical desorption of the RGD-terminated thiols, triggering cell detachment. This method allows for the study of the full cascade of events from detachment to subsequent subcellular reorganization. Fabrication of the electrode arrays may take 1–2 d. Preparation for experiments, including surface functionalization and cell plating, can be completed in 10 h. A series of cell release experiments on one device may last several hours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the concept of programmed subcellular release.
Figure 2: Experimental setup for programmed subcellular release.
Figure 3: Cyclic voltammograms of electrodes.
Figure 4: Programmed subcellular release.
Figure 5: Immunofluorescence staining of a cell during cell release.
Figure 6: Effect of blebbistatin concentration on cell contraction.
Figure 7: Live cell imaging of Lifeact-GFP actin during release.

Similar content being viewed by others

References

  1. Wildt, B., Wirtz, D. & Searson, P.C. Programmed subcellular release for studying the dynamics of cell detachment. Nat. Methods 6, 211–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruoslahti, E. RGD and other recognition sequences for integrins. Ann. Rev. Cell Dev. Biol. 12, 697–715 (1996).

    Article  CAS  Google Scholar 

  3. Ghaly, T., Wildt, B.E. & Searson, P.C. Electrochemical release of fluorescently labeled thiols from patterned gold surfaces. Langmuir 26, 1420–1423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pesika, N.S., Stebe, K.J. & Searson, P.C. Kinetics of desorption of alkanethiolates on gold. Langmuir 22, 3474–3476 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Widrig, C.A., Chung, C. & Porter, M.D. The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes. J. Electroanal. Chem. 310, 335–359 (1991).

    Article  CAS  Google Scholar 

  6. Yang, D.F., Wilde, C.P. & Morin, M. Studies of the electrochemical removal and efficient re-formation of a monolayer of hexadecanethiol self-assembled at an Au(111) single crystal in aqueous solutions. Langmuir 13, 243–249 (1997).

    Article  CAS  Google Scholar 

  7. Mali, P., Bhattacharjee, N. & Searson, P.C. Electrochemically programmed release of biomolecules and nanoparticles. Nano Lett. 6, 1250–1253 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Desai, N.P. & Hubbell, J.A. Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials 12, 144–153 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Kole, T.P., Tseng, Y., Jiang, I., Katz, J.L. & Wirtz, D. Intracellular mechanics of migrating fibroblasts. Mol. Biol. Cell 16, 328–338 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hale, C.M. et al. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95, 5462–5475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bloom, R.J., George, J.P., Celedon, A., Sun, S.X. & Wirtz, D. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95, 4077–4088 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bajpai, S., Feng, Y., Krishnamurthy, R., Longmore, G.D. & Wirtz, D. Loss of alpha-catenin decreases the strength of single E-cadherin bonds between human cancer cells. J. Biol. Chem. 284, 18252–18259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panorchan, P. et al. Single-molecule analysis of cadherin-mediated cell–cell adhesion. J. Cell Sci. 119, 66–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Panorchan, P. et al. Probing cellular mechanical responses to stimuli using ballistic intracellular nanorheology. Meths. Cell Biol. 83, 115–140 (2007).

    CAS  Google Scholar 

  16. Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rajfur, Z., Roy, P., Otey, C., Romer, L. & Jacobson, K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat. Cell Biol. 4, 286–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Ezratty, E.J., Partridge, M.A. & Gundersen, G.G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat. Cell Biol. 7, 581 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Lewis, L. et al. The relationship of fibroblast translocations to cell morphology and stress fibre density. J. Cell Sci. 53, 21–36 (1982).

    CAS  PubMed  Google Scholar 

  20. Palecek, S.P., Schmidt, C.E., Lauffenburger, D.A. & Horwitz, A.F. Integrin dynamics on the tail region of migrating fibroblasts. J. Cell Sci. 109, 941–952 (1996).

    CAS  PubMed  Google Scholar 

  21. Lazarides, E. & Burridge, K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 6, 289–298 (1975).

    Article  CAS  PubMed  Google Scholar 

  22. Wakatsuki, T., Schwab, B., Thompson, N.C. & Elson, E.L. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J. Cell Sci. 114, 1025–1036 (2001).

    CAS  PubMed  Google Scholar 

  23. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Griffin, M.A., Sen, S., Sweeney, H.L. & Discher, D.E. Adhesion-contractile balance in myocyte differentiation. J. Cell Sci. 117, 5855–5863 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A. & Sellers, J.R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279, 35557–35563 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Laukaitis, C.M., Webb, D.J., Donais, K. & Horwitz, A.F. Differential dynamics of α5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427–1440 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ballestrem, C., Wehrle-Haller, B. & Imhof, B. Actin dynamics in living mammalian cells. J. Cell Sci. 111, 1649–1658 (1998).

    CAS  PubMed  Google Scholar 

  29. Lee, J.S. et al. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93, 2542–2552 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wirtz, D. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38, 301–326 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Dubey, P.K., Mishra, V., Jain, S., Mahor, S. & Vyas, S.P. Liposomes modified with cyclic RGD peptide for tumor targeting. J. Drug Targeting 12, 257–264 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH Grants R21EB008259 and U54CA143868. B.W. acknowledges support from the Achievement Awards for College Scientists (ARCS) Foundation. We thank members of the Wirtz and Searson labs for technical advice and reagents.

Author information

Authors and Affiliations

Authors

Contributions

B.W. conducted experiments. B.W., D.W. and P.C.S. designed experiments, analyzed results and wrote the paper.

Corresponding authors

Correspondence to Denis Wirtz or Peter C Searson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildt, B., Wirtz, D. & Searson, P. Triggering cell detachment from patterned electrode arrays by programmed subcellular release. Nat Protoc 5, 1273–1280 (2010). https://doi.org/10.1038/nprot.2010.42

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.42

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing