Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Automated microfluidic protein immunoblotting

Abstract

This protocol describes regional photopatterning of polyacrylamide gels in glass microfluidic devices as a platform for seamless integration of multiple assay steps. The technology enables rapid, automated protein immunoblotting, demonstrated in this study for native western blotting. The fabrication procedure is straightforward and requires approximately 3 h from the start of gel photopatterning to completion of native protein western blotting, a substantial time savings over slab-gel immunoblotting. The assay itself requires less than 5 min. Importantly, all assay stages are programmably controlled by a high-voltage power supply and monitored by an epifluorescence microscope equipped with a charge-coupled device camera. Our approach overcomes severe limitations associated with conventional immunoblotting, including multiple steps requiring manual intervention, low throughput and substantial consumption of reagents. We also describe a simple chemical recycling protocol so that glass chips can be reused. The fabrication technique described forms the basis for a diverse suite of bioanalytical tools, including DNA/RNA blotting and multidimensional separations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the immunoblot protocol.
Figure 2: Immunoblot chip design and operation.
Figure 3: Photopatterning of gels in the immunoblot chip chamber.
Figure 4: Gel precursor solution preparation.
Figure 5: PDMS manifold fabrication.
Figure 6: Running an immunoblot assay.
Figure 7: Glass microfluidic chip regeneration.
Figure 8: Immunoblot assay results.

Similar content being viewed by others

References

  1. Whitesides, G.M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  2. El-Ali, J.E., Sorger, P.K. & Jensen, K.F. Cells on chips. Nature 442, 403–411 (2006).

    Article  CAS  Google Scholar 

  3. Craighead, H. Future lab-on-a-chip technologies for integrating individual molecules. Nature 442, 387–393 (2006).

    Article  CAS  Google Scholar 

  4. Janasek, D., Franzke, J. & Manz, A. Scaling and the design of miniaturized chemical-analysis systems. Nature 442, 374–380 (2006).

    Article  CAS  Google Scholar 

  5. Eijkel, J.C.T. & van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluid. 1, 249–267 (2005).

    Article  CAS  Google Scholar 

  6. Yager, P. et al. Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006).

    Article  CAS  Google Scholar 

  7. Thorsen, T., Maerkl, S.J. & Quake, S.R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  8. Huang, B. et al. Counting low-copy number proteins in a single cell. Science 315, 81–84 (2007).

    Article  CAS  Google Scholar 

  9. Liu, J., Yang, S., Lee, C.S. & DeVoe, D. Polyacrylamide gel plugs enabling 2-D microfluidic protein separations via isoelectric focusing and multiplexed sodium dodecyl sulfate gel electrophoresis. Electrophoresis 29, 2241–2250 (2008).

    Article  CAS  Google Scholar 

  10. Das, C., Zhang, J., Denslow, N.D. & Fan, Z.H. Integration of isoelectric focusing with multi-channel gel electrophoresis by using microfluidic pseudo-valves. Lab. Chip. 7, 1806–1812 (2007).

    Article  CAS  Google Scholar 

  11. Song, S., Singh, A.K., & Kirby, B.J. Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Anal. Chem. 76, 4589–4592 (2004).

    Article  CAS  Google Scholar 

  12. Hatch, A.V., Herr, A.E., Throckmorton, D.J., Brennan, J.S. & Singh, A.K. Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal. Chem. 78, 4976–4984 (2006).

    Article  CAS  Google Scholar 

  13. Herr, A.E. et al. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc. Natl Acad. Sci. USA 104, 5268–5273 (2007).

    Article  CAS  Google Scholar 

  14. Peterson, D.S. Solid supports for micro analytical systems. Lab. Chip. 5, 132–139 (2005).

    Article  CAS  Google Scholar 

  15. Svec, F. My favorite materials: porous polymer monoliths. J. Sep. Sci. 32, 3–9 (2009).

    Article  CAS  Google Scholar 

  16. Schägger, H. Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22 (2006).

    Article  Google Scholar 

  17. Wittig, I., Braun, H.P. & Schägger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    Article  CAS  Google Scholar 

  18. Kinoshita, E., Kinoshita-Kikuta, E. & Koike, T. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat. Protoc. 4, 1513–1521 (2009).

    Article  CAS  Google Scholar 

  19. Stead, J.A. & McDowall, K.J. Two-dimensional gel electrophoresis for identifying proteins that bind DNA or RNA. Nat. Protoc. 2, 1839–1848 (2007).

    Article  CAS  Google Scholar 

  20. He, M. & Herr, A.E. Microfluidic polyacrylamide gel electrophoresis with in-situ immunoblotting for native protein analysis. Anal. Chem. 81, 8177–8184 (2009).

    Article  CAS  Google Scholar 

  21. Fan, A.C. et al. Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical specimens. Nat. Med. 15, 566–571 (2009).

    Article  CAS  Google Scholar 

  22. He, M. & Herr, A.E. Polyacrylamide gel photopatterning enables automated protein immunoblotting in a two-dimensional microdevice. J. Am. Chem. Soc. 132, 2512–2513 (2010).

    Article  CAS  Google Scholar 

  23. Kurien, B.T. & Scofield, R.H. Protein Blotting and Detection: Methods and Protocols 1–33 (Humana Press, New York, USA, 2009).

  24. Yamada, M., Mao, P., Fu, J. & Han, J. Rapid quantification of disease-marker proteins using continuous-flow immunoseparation in a nanosieve fluidic device. Anal. Chem. 81, 7067–7074 (2009).

    Article  CAS  Google Scholar 

  25. Fu, J., Mao, P. & Han, J. Artificial molecular sieves and filters: a new paradigm for biomolecule separation. Trends Biotech. 26, 311–320 (2008).

    Article  CAS  Google Scholar 

  26. Han, J. & Craighead, H.G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    Article  CAS  Google Scholar 

  27. Fu, J. et al. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotech. 2, 121–128 (2007).

    Article  CAS  Google Scholar 

  28. Huang, L.R. et al. A DNA prism for high-speed continuous fractionation of large NDA molecules. Nat. Biotech. 20, 1048–1051 (2002).

    Article  CAS  Google Scholar 

  29. Wirth, M.J. Separation media for microchips. Anal. Chem. 79, 800–808 (2007).

    Article  CAS  Google Scholar 

  30. Zeng, Y., He, M. & Harrison, D.J. Microfluidic self-patterning of large-scale crystalline nanoarrays for high-throughput continuous DNA fractionation. Angew. Chem. Int. Ed. 47, 6388–6391 (2008).

    Article  CAS  Google Scholar 

  31. Fu, J., Mao, P. & Han, J. Continuous-flow bioseparation using microfabricated anisotropic nanofluidic sieving structures. Nat. Protoc. 4, 1681–1698 (2009).

    Article  CAS  Google Scholar 

  32. Xiong, L., Zhang, R. & Regnier, F.E. Potential of silica monolithic columns in peptide separations. J. Chromatogr. A 1030, 187–194 (2004).

    Article  CAS  Google Scholar 

  33. Awada, C., Sato, T. & Takao, T. Affinity-trap polyacrylamide gel electrophoresis: a novel method of capturing specific proteins by electro-transfer. Anal. Chem. 82, 755–761 (2010).

    Article  CAS  Google Scholar 

  34. Herr, A.E., Throckmorton, D.J., Davenport, A.A. & Singh, A.K. On-chip native gel electrophoresis-based immunoassays for tetanus antibody and toxin. Anal. Chem. 77, 585–590 (2005).

    Article  CAS  Google Scholar 

  35. Herr, A.E. & Singh, A.K. Photopolymerized cross-linked polyacrylamide gels for on-chip protein sizing. Anal. Chem. 76, 4727–4733 (2004).

    Article  CAS  Google Scholar 

  36. Hou, C. & Herr, A.E. Ultra-short separation length homogeneous electrophoretic immunoassays using on-chip discontinuous polyacrylamide gels. Anal. Chem. 82, 3343–3351 (2010).

    Article  CAS  Google Scholar 

  37. Jemere, A.B., Oleschuk, R.D. & Harrison, D.J. Microchip-based capillary electrochromatography using packed beds. Electrophoresis 24, 3018–3025 (2003).

    Article  CAS  Google Scholar 

  38. Oleschuk, R.D., Shultz-Lockyear, L.L., Ning, Y. & Harrison, D.J. Trapping of bead based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography. Anal. Chem. 72, 585–590 (2000).

    Article  CAS  Google Scholar 

  39. Yu, C., Xu, M., Svec, F. & Fréchet, J.M.J. Preparation of monolithic polymers with controlled porous properties for microfluidic chip applications using photoinitiated free-radical polymerization. J. Polym. Sci. Part A Polym. Chem. 40, 755–769 (2002).

    Article  CAS  Google Scholar 

  40. Le Gac, S.L., Carlier, J., Camart, J.C., Olivé, C.C. & Rolando, C. Monoliths for microfluidic devices in proteomics. J. Chromatogr. B 808, 3–14 (2004).

    Article  CAS  Google Scholar 

  41. Song, S., Singh, A.K., Shepodd, T.J. & Kirby, B.J. Microchip dialysis of proteins using in situ photopatterned nanoporous polymer membranes. Anal. Chem. 76, 2367–2373 (2004).

    Article  CAS  Google Scholar 

  42. Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl Acad. Sci. USA 76, 4350–4354 (1979).

    Article  CAS  Google Scholar 

  43. Wu, Y., Li, Q. & Chen, X.Z. Detecting protein-protein interactions by Far western blotting. Nat. Protoc. 2, 3278–3284 (2007).

    Article  CAS  Google Scholar 

  44. Ciaccio, M.F., Wagner, J.P., Chuu, C.P., Lauffenburger, D.A., & Jones, R.B. Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat. Methods 7, 148–155 (2010).

    Article  CAS  Google Scholar 

  45. Kolli, M., Hamidouche, M., Bouaouadja, N. & Fantozzi, G., et al. HF etching effect on sandblasted soda-lime glass properties. J. Eur. Ceram. Soc. 29, 2697–2704 (2009).

    Article  CAS  Google Scholar 

  46. He, Q. et al. Fabrication of 1D nanofluidic channels on glass substrate by wet etching and room-temperature bonding. Anal. Chim. Acta. 628, 1–8 (2008).

    Article  CAS  Google Scholar 

  47. Iliescu, C., Chen, B. & Miao, J. On the wet etching of Pyrex glass. Sens. Actuators A 143, 154–161 (2008).

    Article  CAS  Google Scholar 

  48. Lerch, M.A. & Jacobson, S.C. Electrokinetic fluid control in two-dimensional planar microfluidic devices. Anal. Chem. 79, 7485–7491 (2007).

    Article  CAS  Google Scholar 

  49. Huang, L.R. et al. Generation of large-area tunable uniform electric fields in microfluidics arrays for rapid DNA separation. Tech. Dig. Int. El. Devices Meet. 1, 363–366 (2001).

    Google Scholar 

  50. Das, C., Fredrickson, C.K., Xia, Z. & Fan, Z.H. Device fabrication and integration with photodefinable microvalves for protein separation. Sensor Actuat. A Phys. 134, 271–277 (2007).

    Article  CAS  Google Scholar 

  51. Sensabaugh, G.F. & Blake, E.T. Seminal plasma protein p30: simplified purification and evidence for identity with prostate-specific antigen. J. Urol. 144, 1523–1526 (1990).

    Article  CAS  Google Scholar 

  52. Collins, T.J. ImageJ for microscopy. Biotechniques 43, S25–S30 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the University of California, Berkeley and the QB3/Rogers Family Foundation Award. Facilities and equipment support from UC Berkeley's Biomolecular Nanofabrication Center is also appreciated. PSA samples were a generous gift from D. Peehl, Stanford University. A.E.H. is an Alfred P. Sloan Foundation Research Fellow in chemistry.

Author information

Authors and Affiliations

Authors

Contributions

M.H. designed chips and conducted experiments. M.H. and A.E.H. analyzed data and wrote the paper.

Corresponding author

Correspondence to Amy E Herr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Microscale immunoblot chip layout and dimensions (unit: mm). Channel depth is 20µm. The closed squares and circles designate areas for etching. The regions within the green and blue boxes are depicted further in Supplementary Figure 2 and Supplementary Figure 3, respectively. (PDF 217 kb)

Supplementary Fig. 2

Green box detail from Supplementary Figure 1 (unit: mm). Channel depth is 20µm. The closed square and triangles designate areas for etching. (PDF 211 kb)

Supplementary Fig. 3

Blue box detail from Supplementary Figure 1 (unit: mm). Channel depth is 20µm. The closed square and triangles designate areas for etching. (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M., Herr, A. Automated microfluidic protein immunoblotting. Nat Protoc 5, 1844–1856 (2010). https://doi.org/10.1038/nprot.2010.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.142

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing