Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Protocol for the quantitative assessment of DNA concentration and damage (fragmentation and nicks)

Abstract

An ultrasensitive protocol is presented for the quantitative assessment of fragmented and nicked dsDNA using PicoGreen and consists of four methods. The first quantifies the concentration of DNA, whereas the second (quantitative complement of the Comet assay) quantifies the degree of DNA fragmentation seen in a typical DNA agarose electrophoresis gel. Both methods have sensitivity of 5 pg of DNA. The third method (quantitative counterpart of the electrophoresis-based qualitative apoptotic and necrotic DNA assays) quantifies the polyethylene glycol-fractionated small-size (0–1 kb) fragmented DNA. This method also detects up to 5 pg of damaged DNA and requires a minimum sample of quantity 0.2 ml of 2.5 μg ml−1. The fourth method measures the percentage of DNA nicks by alkaline DNA unwinding and requires up to 15 pg of DNA sample. The time required for processing 10 DNA samples is 1/2, 1, 13 and 1 h for the first, second, third and fourth method, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence dependence of PicoGreen–DNA complex on the degree of DNA fragmentation13.
Figure 2: Quantitative assessment of DNA fragmentation smearing in agarose gel electrophoresis by this protocol13.
Figure 3: Principle of small-size (0–1 kb) fragmented DNA quantification14.
Figure 4: Quantification of DNA small-size fragmentation and nicks in filamentous phytopathogenic fungi.

Similar content being viewed by others

References

  1. Halliwell, B. & Gutteridge, C.M.J. Free Radicals in Biology and Medicine (Oxford University Press, Oxford, 1999).

    Google Scholar 

  2. De Bont, R. & van Larebeke, N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19, 169–185 (2004).

    Article  CAS  Google Scholar 

  3. Van Der Vaart, M. & Pretorius, P. J. Circulating DNA: Its origin and fluctuation. Ann. N. Y. Acad. Sci. 1137, 18–26 (2008).

    Article  CAS  Google Scholar 

  4. Gahan, P.B. Circulating nucleic acids in plasma and serum: roles in diagnosis and prognosis in diabetes and cancer. Infect. Disord. Drug Targets 8, 100–108 (2008).

    Article  CAS  Google Scholar 

  5. Olive, P.L. & Banath, J.P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).

    Article  CAS  Google Scholar 

  6. Sambrook, J., Fritsch, F.E. & Maniatis, T. Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

    Google Scholar 

  7. Lelli, L.J.J., Becks, L.L., Dabrowska, I.M. & Hinshaw, B.D. ATP converts necrosis to apoptosis in oxidant-injured endothelial cells. Free Rad. Biol. Med. 25, 694–702 (1998).

    Article  CAS  Google Scholar 

  8. Zhu, N. & Wang, Z. An assay for DNA fragmentation in apoptosis without phenol/chloroform extraction and ethanol precipitation. Anal. Biochem. 246, 155–158 (1997).

    Article  CAS  Google Scholar 

  9. Fenech, M. The in vitro micronucleus technique. Mut. Res. 455, 81–95 (2000).

    Article  CAS  Google Scholar 

  10. Arita, K. et al. Mechanisms of enhanced apoptosis in HL-60 cells by UV-irradiated N-3 and N-6 polyunsaturated fatty acids. Free Rad. Biol. Med. 35, 189–199 (2003).

    Article  CAS  Google Scholar 

  11. Erusalimsky, J.D., John, J. & Moore, M. A novel filter binding assay to measure internucleosomal DNA fragmentation. Biochem. Soc. Transact. 24, 567S (1996).

    Article  Google Scholar 

  12. Ohyama, K., Enn, P., Uchide, N., Bessho, T. & Yamakawa, T. Improvement of separation method of fragmented DNA from an apoptotic cell DNA sample for the quantitation using agarose gel electrophoresis. Biol. Pharm. Bull. 24, 342–346 (2001).

    Article  CAS  Google Scholar 

  13. Georgiou, D.C. & Papapostolou, N. Assay for the quantification of intact/fragmented genomic DNA. Anal. Biochem. 358, 247–256 (2006).

    Article  CAS  Google Scholar 

  14. Georgiou, D.C., Patsoukis & Papapostolou, I. Assay for the quantification of small-sized fragmented genomic DNA. Anal. Biochem. 339, 223–230 (2005).

    Article  CAS  Google Scholar 

  15. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

  16. Chohan, K.R., Griffin, J.T., Lafromboise, M., De Jonge, C.J. & Carrell, D.T. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J. Androl. 27, 53–59 (2006).

    Article  CAS  Google Scholar 

  17. Jones, D.P., Maellaro, E., Jiang, S., Slater, G.F.A. & Orrenius, S. Effects of N-acetyl-L-cysteine on T-cell apoptosis are not mediated by increased cellular glutathione. Immunol. Lett. 45, 205–209 (1995).

    Article  CAS  Google Scholar 

  18. Jonas, R.C., Ziegler, R.T., Gu, H.L. & Jones, P.D. Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (CaCO2) cell line. Free Rad. Biol. Med. 33, 1499–1506 (2002).

    Article  CAS  Google Scholar 

  19. Kanter, M.P. & Schwartz, S.H. A fluorescence enhancement assay for cellular DNA damage. Mol. Pharmacol. 22, 145–151 (1982).

    Article  CAS  Google Scholar 

  20. Birnboim, C.H. Fluorometric analysis of DNA unwinding to study strand breaks and repair in mammalian cells. In Methods in Enzymology (eds. Packer, L. & Glazer, A.N.) 550–555 (Academic Press, San Diego, 1990).

    Google Scholar 

  21. Georgiou, C.D., Papapostolou, I., Patsoukis, N. & Grintzalis, K. Assays for the quantitative characterization of genomic, mitochondrial and plasmid DNA. In New Research on DNA Damage (eds. Kimura, H. & Suzuki, A.) (Nova Science Publishers, Inc., Hauppauge, NY, 2008) (in press).

    Google Scholar 

  22. Patsoukis, N. & Georgiou, C.D. Oxidative stress and sclerotial differentiation of the phytopathogenic fungus Rhizoctonia solani . Arch. Microbiol. 188, 225–233 (2007).

    Article  CAS  Google Scholar 

  23. Patsoukis, N. & Georgiou, D.C. Differentiation of Sclerotinia minor depends on thiol redox state and oxidative stress. Can. J. Microbiol. 54, 28–36 (2008).

    Article  CAS  Google Scholar 

  24. Haugland, R.P. Handbook of Fluorescent Probes and Related Products (Molecular Probes Inc., Eugene, OR, 2002).

    Google Scholar 

  25. Brown, T.A. Gene Cloning and DNA Analysis: an Introduction (Blackwell Publishing, Malden, MA, 2001).

  26. Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C. & Gelbart, W.M. An Introduction to Genetic Analysis (W. H. Freeman, New York, NY, 2000).

    Google Scholar 

  27. Fahle, G.A. & Fischer, S.H. Comparison of six commercial DNA extraction kits for recovery of cytomegalovirus DNA from spiked human specimens. J. Clin. Microbiol. 38, 3860–3863 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, L., Hirayasu, K., Ishizawa, M. & Kobayashi, Y. Purification of genomic DNA from human whole blood by isopropanol-fractionation with concentrated NaI and SDS. Nucleic Acids Res. 22, 1774–1775 (1994).

    Article  CAS  Google Scholar 

  29. Hansen, H.M., Wiemels, J.L., Wrensch, M. & Wiencke, J.K. DNA quantification of whole genome amplified samples for genotyping on a multiplexed bead array platform. Canc. Epidemiol. Biomarkers Preven. 16, 1686–1690 (2007).

    Article  CAS  Google Scholar 

  30. Freese, L. et al. Evaluating homogeneity of LL601 rice in commercial lots using quantitative real-time PCR. J. Agricult. Food Chem. 55, 6060–6066 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Greek Ministry of Education, University of Patras, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos D Georgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiou, C., Papapostolou, I. & Grintzalis, K. Protocol for the quantitative assessment of DNA concentration and damage (fragmentation and nicks). Nat Protoc 4, 125–131 (2009). https://doi.org/10.1038/nprot.2008.222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.222

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing