Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity

Abstract

This optimized protocol (including links to instruction videos) describes a comet-based in vitro DNA repair assay that is relatively simple, versatile, and inexpensive, enabling the detection of base and nucleotide excision repair activity. Protein extracts from samples are incubated with agarose-embedded substrate nucleoids (‘naked’ supercoiled DNA) containing specifically induced DNA lesions (e.g., resulting from oxidation, UVC radiation or benzo[a]pyrene-diol epoxide treatment). DNA incisions produced during the incubation reaction are quantified as strand breaks after electrophoresis, reflecting the extract’s incision activity. The method has been applied in cell culture model systems, human biomonitoring and clinical investigations, and animal studies, using isolated blood cells and various solid tissues. Once extracts and substrates are prepared, the assay can be completed within 2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of the principle behind the sample extract incubation reaction and comet formation.
Fig. 2: Overview of the comet-based in vitro DNA repair assay. (using 2 gels/slide as example).
Fig. 3: Overview of an example assay setup for the comet-based in vitro DNA repair assay.
Fig. 4: Principle of optimization of the extract’s protein concentration.
Fig. 5: The 12-gels/slide format.
Fig. 6: Theoretical data illustrating how to select the optimal incubation time.
Fig. 7: Equipment setup for exposure of substrate cells.
Fig. 8: Overview of slides containing internal experimental controls and sample extract used to calculate the final DNA repair incision activity.
Fig. 9: Examples of results obtained with a BER assay.
Fig. 10: Examples of results obtained with a NER assay using UVC-treated substrate cells.
Fig. 11: Examples of results obtained with a NER assay using BPDE-treated substrate cells.

Similar content being viewed by others

Data availability

The authors declare that the majority of the data shown here as examples or anticipated results are available in the original papers. Other supporting data are available upon reasonable request to the corresponding author.

References

  1. Ostling, O. & Johanson, K. J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123, 291–298 (1984).

    CAS  PubMed  Google Scholar 

  2. Cook, P. R., Brazell, I. A. & Jost, E. Characterization of nuclear structures containing superhelical DNA. J. Cell Sci. 22, 303–324 (1976).

    CAS  PubMed  Google Scholar 

  3. Collins, A. R. & Azqueta, A. Single cell gel electrophoresis combined with lesion-specific enzymes to measure oxidative damage to DNA. in Laboratory Methods in Cell Biology, Vol. 112 (eds Anderson, C. T., Howell, E. S. & Dixit, R.) 69–92 (Elsevier, 2012).

  4. Stefanini, M. et al. Novel Chinese hamster ultraviolet-sensitive mutants for excision repair form complementation groups 9 and 10. Cancer Res. 51, 3965–3971 (1991).

    CAS  PubMed  Google Scholar 

  5. Lorenzo, Y. et al. The carotenoid beta-cryptoxanthin stimulates the repair of DNA oxidation damage in addition to acting as an antioxidant in human cells. Carcinogenesis 30, 308–314 (2009).

    CAS  PubMed  Google Scholar 

  6. Collins, A. R., Fleming, I. M. & Gedik, C. M. In vitro repair of oxidative and ultraviolet-induced DNA damage in supercoiled nucleoid DNA by human cell extract. Biochim. Biophys. Acta 1219, 724–727 (1994).

    PubMed  Google Scholar 

  7. Langie, S. A. et al. Development and validation of a modified comet assay to phenotypically assess nucleotide excision repair. Mutagenesis 21, 153–158 (2006).

    CAS  PubMed  Google Scholar 

  8. Collins, A. R. et al. Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay. Mutagenesis 16, 297–301 (2001).

    CAS  PubMed  Google Scholar 

  9. Møller, P. et al. Searching for assay controls for the Fpg- and hOGG1-modified comet assay. Mutagenesis 33, 9–19 (2018).

    PubMed  Google Scholar 

  10. Borghini, A., Roursgaard, M., Andreassi, M. G., Kermanizadeh, A. & Moller, P. Repair activity of oxidatively damaged DNA and telomere length in human lung epithelial cells after exposure to multi-walled carbon nanotubes. Mutagenesis 32, 173–180 (2017).

    CAS  PubMed  Google Scholar 

  11. Jensen, D. M. et al. Telomere length and genotoxicity in the lung of rats following intragastric exposure to food-grade titanium dioxide and vegetable carbon particles. Mutagenesis 34, 203–214 (2019).

    CAS  PubMed  Google Scholar 

  12. Lohr, M. et al. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells. Mutagenesis 30, 695–700 (2015).

    PubMed  Google Scholar 

  13. Gaivao, I., Piasek, A., Brevik, A., Shaposhnikov, S. & Collins, A. R. Comet assay-based methods for measuring DNA repair in vitro; estimates of inter- and intra-individual variation. Cell Biol. Toxicol. 25, 45–52 (2009).

    CAS  PubMed  Google Scholar 

  14. Herrera, M. et al. Differences in repair of DNA cross-links between lymphocytes and epithelial tumor cells from colon cancer patients measured in vitro with the comet assay. Clin. Cancer Res. 15, 5466–5472 (2009).

    CAS  PubMed  Google Scholar 

  15. van Dyk, E., Steenkamp, A., Koekemoer, G. & Pretorius, P. J. Hereditary tyrosinemia type 1 metabolites impair DNA excision repair pathways. Biochem. Biophys. Res. Commun. 401, 32–36 (2010).

    PubMed  Google Scholar 

  16. Langie, S. A. et al. The effect of oxidative stress on nucleotide-excision repair in colon tissue of newborn piglets. Mutat. Res. 695, 75–80 (2010).

    CAS  PubMed  Google Scholar 

  17. Mikkelsen, L. et al. Aging and defense against generation of 8-oxo-7,8-dihydro-2’-deoxyguanosine in DNA. Free Radic. Biol. Med. 47, 608–615 (2009).

    CAS  PubMed  Google Scholar 

  18. Langie, S. A. et al. Measuring DNA repair incision activity of mouse tissue extracts towards singlet oxygen-induced DNA damage: a comet-based in vitro repair assay. Mutagenesis 26, 461–471 (2011).

    CAS  PubMed  Google Scholar 

  19. Slyskova, J. et al. Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin. Cancer Res. 18, 5878–5887 (2012).

    CAS  PubMed  Google Scholar 

  20. Azqueta, A., Slyskova, J., Langie, S. A., O’Neill Gaivao, I. & Collins, A. Comet assay to measure DNA repair: approach and applications. Front. Genet. 5, 288 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Yauk, C., Lambert, I., Marchetti, F. & Douglas, G. AOP 15. Alkylation of DNA in male pre-meiotic germ cells leading to heritable mutations. AOPWiki https://aopwiki.org/aops/15

  22. Pottenger, L. H., Schoeny, R., Moore, M. & Simon, T. W. AOP 46. AFB1: mutagenic mode-of-action leading to hepatocellular carcinoma (HCC). AOPWiki https://aopwiki.org/aops/46

  23. Silva, J. P., Gomes, A. C. & Coutinho, O. P. Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells. Eur. J. Pharmacol. 601, 50–60 (2008).

    CAS  PubMed  Google Scholar 

  24. Ramos, A. A., Azqueta, A., Pereira-Wilson, C. & Collins, A. R. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. J. Agric. Food Chem. 58, 7465–7471 (2010).

    CAS  PubMed  Google Scholar 

  25. Ramos, A. A., Pereira-Wilson, C. & Collins, A. R. Protective effects of ursolic acid and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-2 cells. Mutat. Res. 692, 6–11 (2010).

    CAS  PubMed  Google Scholar 

  26. Azqueta, A., Costa, S., Lorenzo, Y., Bastani, N. E. & Collins, A. R. Vitamin C in cultured human (HeLa) cells: lack of effect on DNA protection and repair. Nutrients 5, 1200–1217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Silva, J. P., Gomes, A. C., Proenca, F. & Coutinho, O. P. Novel nitrogen compounds enhance protection and repair of oxidative DNA damage in a neuronal cell model: comparison with quercetin. Chem. Biol. Interact. 181, 328–337 (2009).

    CAS  PubMed  Google Scholar 

  28. Sliwinski, T. et al. STI571 reduces NER activity in BCR/ABL-expressing cells. Mutat. Res. 654, 162–167 (2008).

    CAS  PubMed  Google Scholar 

  29. Folkmann, J. K. et al. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ. Health Perspect. 117, 703–708 (2009).

    CAS  PubMed  Google Scholar 

  30. Langie, S. A. et al. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring. FASEB J. 27, 3323–3334 (2013).

    CAS  PubMed  Google Scholar 

  31. Langie, S. A. et al. Redox and epigenetic regulation of the APE1 gene in the hippocampus of piglets: the effect of early life exposures. DNA Repair (Amst.) 18, 52–62 (2014).

    CAS  Google Scholar 

  32. Langie, S. A. et al. The ageing brain: effects on DNA repair and DNA methylation in mice. Genes (Basel) 8, https://doi.org/10.3390/genes8020075 (2017).

  33. Setayesh, T. et al. Impact of weight loss strategies on obesity-induced DNA damage. Mol. Nutr. Food Res. 63, e1900045 (2019).

    PubMed  Google Scholar 

  34. Gaivao, I. & Sierra, L. M. Drosophila comet assay: insights, uses, and future perspectives. Front. Genet. 5, 304 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Dusinska, M., Dzupinkova, Z., Wsolova, L., Harrington, V. & Collins, A. R. Possible involvement of XPA in repair of oxidative DNA damage deduced from analysis of damage, repair and genotype in a human population study. Mutagenesis 21, 205–211 (2006).

    CAS  PubMed  Google Scholar 

  36. Slyskova, J. et al. Relationship between the capacity to repair 8-oxoguanine, biomarkers of genotoxicity and individual susceptibility in styrene-exposed workers. Mutat. Res. 634, 101–111 (2007).

    CAS  PubMed  Google Scholar 

  37. Dusinska, M. et al. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies. Mutat. Res. 736, 130–137 (2012).

    CAS  PubMed  Google Scholar 

  38. Staruchova, M. et al. Occupational exposure to mineral fibres. Biomarkers of oxidative damage and antioxidant defence and associations with DNA damage and repair. Mutagenesis 23, 249–260 (2008).

    CAS  PubMed  Google Scholar 

  39. Azqueta, A. et al. DNA repair as a human biomonitoring tool: comet assay approaches. Mutat. Res. 781, 71–87 (2019).

    CAS  PubMed  Google Scholar 

  40. Dusinska, M. et al. Genotoxic effects of asbestos in humans. Mutat. Res. 553, 91–102 (2004).

    CAS  PubMed  Google Scholar 

  41. Dusinska, M. et al. Does occupational exposure to mineral fibres cause DNA or chromosome damage? Mutat. Res. 553, 103–110 (2004).

    CAS  PubMed  Google Scholar 

  42. Vodicka, P. et al. Cytogenetic markers, DNA single-strand breaks, urinary metabolites, and DNA repair rates in styrene-exposed lamination workers. Environ. Health Perspect. 112, 867–871 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jensen, A. et al. Influence of the OGG1 Ser326Cys polymorphism on oxidatively damaged DNA and repair activity. Free Radic. Biol. Med. 52, 118–125 (2012).

    CAS  PubMed  Google Scholar 

  44. Collins, A. R., Harrington, V., Drew, J. & Melvin, R. Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis 24, 511–515 (2003).

    CAS  PubMed  Google Scholar 

  45. Caple, F. et al. Inter-individual variation in DNA damage and base excision repair in young, healthy non-smokers: effects of dietary supplementation and genotype. Br. J. Nutr. 103, 1585–1593 (2010).

    CAS  PubMed  Google Scholar 

  46. Stoyanova, E. et al. Base excision repair capacity in chronic renal failure patients undergoing hemodialysis treatment. Cell Biochem. Funct. 32, 177–182 (2014).

    CAS  PubMed  Google Scholar 

  47. Fikrova, P. et al. DNA crosslinks, DNA damage and repair in peripheral blood lymphocytes of non-small cell lung cancer patients treated with platinum derivatives. Oncol. Rep. 31, 391–396 (2014).

    CAS  PubMed  Google Scholar 

  48. Slyskova, J. et al. Differences in nucleotide excision repair capacity between newly diagnosed colorectal cancer patients and healthy controls. Mutagenesis 27, 225–232 (2012).

    CAS  PubMed  Google Scholar 

  49. Slyskova, J. et al. Post-treatment recovery of suboptimal DNA repair capacity and gene expression levels in colorectal cancer patients. Mol. Carcinog. 54, 769–778 (2015).

    CAS  PubMed  Google Scholar 

  50. Vodenkova, S. et al. Base excision repair capacity as a determinant of prognosis and therapy response in colon cancer patients. DNA Repair (Amst.) 72, 77–85 (2018).

    CAS  Google Scholar 

  51. Slyskova, J., Langie, S. A., Collins, A. R. & Vodicka, P. Functional evaluation of DNA repair in human biopsies and their relation to other cellular biomarkers. Front. Genet. 5, 116 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).

    CAS  PubMed  Google Scholar 

  53. Collins, A. R., Ord, M. J. & Johnson, R. T. Correlations of DNA damage and repair with nuclear and chromosomal damage in HeLa cells caused by methylnitrosamides. Cancer Res. 41, 5176–5187 (1981).

    CAS  PubMed  Google Scholar 

  54. Crebelli, R. et al. Biomonitoring of primary aluminium industry workers: detection of micronuclei and repairable DNA lesions by alkaline SCGE. Mutat. Res. 516, 63–70 (2002).

    CAS  PubMed  Google Scholar 

  55. Vande Loock, K., Decordier, I., Ciardelli, R., Haumont, D. & Kirsch-Volders, M. An aphidicolin-block nucleotide excision repair assay measuring DNA incision and repair capacity. Mutagenesis 25, 25–32 (2010).

    CAS  PubMed  Google Scholar 

  56. Figueroa-Gonzalez, G. & Perez-Plasencia, C. Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol. Lett. 13, 3982–3988 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lambert, B., Ringborg, U. & Skoog, L. Age-related decrease of ultraviolet light-induced DNA repair synthesis in human peripheral leukocytes. Cancer Res. 39, 2792–2795 (1979).

    CAS  PubMed  Google Scholar 

  58. Athas, W. F., Hedayati, M. A., Matanoski, G. M., Farmer, E. R. & Grossman, L. Development and field-test validation of an assay for DNA repair in circulating human lymphocytes. Cancer Res. 51, 5786–5793 (1991).

    CAS  PubMed  Google Scholar 

  59. Redaelli, A., Magrassi, R., Bonassi, S., Abbondandolo, A. & Frosina, G. AP endonuclease activity in humans: development of a simple assay and analysis of ten normal individuals. Teratog. Carcinog. Mutagen. 18, 17–26 (1998).

    CAS  PubMed  Google Scholar 

  60. Elliott, R. M., Astley, S. B., Southon, S. & Archer, D. B. Measurement of cellular repair activities for oxidative DNA damage. Free Radic. Biol. Med. 28, 1438–1446 (2000).

    CAS  PubMed  Google Scholar 

  61. Roldan-Arjona, T. et al. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl Acad. Sci. USA 94, 8016–8020 (1997).

    CAS  PubMed  Google Scholar 

  62. Sauvaigo, S. et al. An oligonucleotide microarray for the monitoring of repair enzyme activity toward different DNA base damage. Anal. Biochem. 333, 182–192 (2004).

    CAS  PubMed  Google Scholar 

  63. Paz-Elizur, T. et al. DNA repair activity for oxidative damage and risk of lung cancer. J. Natl Cancer Inst. 95, 1312–1319 (2003).

    CAS  PubMed  Google Scholar 

  64. Paz-Elizur, T. et al. Reduced repair of the oxidative 8-oxoguanine DNA damage and risk of head and neck cancer. Cancer Res. 66, 11683–11689 (2006).

    CAS  PubMed  Google Scholar 

  65. Paz-Elizur, T. et al. Development of an enzymatic DNA repair assay for molecular epidemiology studies: distribution of OGG activity in healthy individuals. DNA Repair (Amst.) 6, 45–60 (2007).

    CAS  Google Scholar 

  66. Leitner-Dagan, Y. et al. N-methylpurine DNA glycosylase and OGG1 DNA repair activities: opposite associations with lung cancer risk. J. Natl Cancer Inst. 104, 1765–1769 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Leitner-Dagan, Y. et al. Enzymatic MPG DNA repair assays for two different oxidative DNA lesions reveal associations with increased lung cancer risk. Carcinogenesis 35, 2763–2770 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Azqueta, A. & Collins, A. R. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch. Toxicol. 87, 949–968 (2013).

    CAS  PubMed  Google Scholar 

  69. Riso, P. et al. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis 25, 595–602 (2010).

    CAS  PubMed  Google Scholar 

  70. Danielsen, P. H. et al. Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy humans. Mutat. Res. 642, 37–42 (2008).

    CAS  PubMed  Google Scholar 

  71. Collins, A. R. & Azqueta, A. DNA repair as a biomarker in human biomonitoring studies; further applications of the comet assay. Mutat. Res. 736, 122–129 (2012).

    CAS  PubMed  Google Scholar 

  72. Guarnieri, S. et al. DNA repair phenotype and dietary antioxidant supplementation. Br. J. Nutr. 99, 1018–1024 (2008).

    CAS  PubMed  Google Scholar 

  73. Gaivão, I., Rodríguez, R. & Sierra, L. M. Use of the comet assay to study DNA repair in Drosophila melanogaster. in Genotoxicity and DNA Repair: A Practical Approach (eds Sierra, L. M. & Gaivão, I.) Ch. 23 (Humana Press, 2014).

  74. Gorniak, J. P. et al. Tissue differences in BER-related incision activity and non-specific nuclease activity as measured by the comet assay. Mutagenesis 28, 673–681 (2013).

    CAS  PubMed  Google Scholar 

  75. Muruzabal, D., Langie, S. A. S., Pourrut, B. & Azqueta, A. The enzyme-modified comet assay: enzyme incubation step in 2 vs 12-gels/slide systems. Mutat. Res. 845, 402981 (2019).

    CAS  PubMed  Google Scholar 

  76. Azqueta, A., Langie, S. & Collins, A. R. The effect of extract concentration and time of incubation in the comet based in vitro DNA repair assay. Abstracts of the 12th International Comet Assay Workshop held at the University of Navarra, Pamplona, Spain, 29–31 August 2017. Mutagenesis 32, e24 https://academic.oup.com/mutage/article/32/6/e1/4844756#121612377 (2018).

  77. Boer, K., Isenmann, S. & Deufel, T. Strong interference of hemoglobin concentration on CSF total protein measurement using the trichloroacetic acid precipitation method. Clin. Chem. Lab. Med. 45, 112–113 (2007).

    CAS  PubMed  Google Scholar 

  78. Roman, Y., Bomsel-Demontoy, M. C., Levrier, J., Chaste-Duvernoy, D. & Jalme, M. S. Effect of hemolysis on plasma protein levels and plasma electrophoresis in birds. J. Wildl. Dis. 45, 73–80 (2009).

    CAS  PubMed  Google Scholar 

  79. Brodersen, R. Bilirubin. Solubility and interaction with albumin and phospholipid. J. Biol. Chem. 254, 2364–2369 (1979).

    CAS  PubMed  Google Scholar 

  80. Kjellin, K. G. Bilirubin compounds in the CSF. J. Neurol. Sci. 13, 161–173 (1971).

    CAS  PubMed  Google Scholar 

  81. Moller, P. et al. On the search for an intelligible comet assay descriptor. Front. Genet. 5, 217 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Forchhammer, L. et al. Variation in assessment of oxidatively damaged DNA in mononuclear blood cells by the comet assay with visual scoring. Mutagenesis 23, 223–231 (2008).

    CAS  PubMed  Google Scholar 

  83. Azqueta, A. et al. The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis 26, 393–399 (2011).

    CAS  PubMed  Google Scholar 

  84. Brunborg, G., Rolstadaas, L. & Gutzkow, K. B. Electrophoresis in the comet assay. in Electrophoresis: Life Sciences Practical Applications (eds Boldura, O-M. & Baltă, C.) 526–652 (IntechOpen, 2018).

  85. Shaposhnikov, S. et al. Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation. Toxicol. Lett. 195, 31–34 (2010).

    CAS  PubMed  Google Scholar 

  86. Collins, A. R. et al. The comet assay: topical issues. Mutagenesis 23, 143–151 (2008).

    CAS  PubMed  Google Scholar 

  87. Forchhammer, L. et al. Variation in the measurement of DNA damage by comet assay measured by the ECVAG inter-laboratory validation trial. Mutagenesis 25, 113–123 (2010).

    CAS  PubMed  Google Scholar 

  88. Azqueta, A., Langie, S. A., Slyskova, J. & Collins, A. R. Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay—a methodological overview. DNA Repair (Amst.) 12, 1007–1010 (2013).

    CAS  Google Scholar 

  89. Gungor, N. et al. Lung inflammation is associated with reduced pulmonary nucleotide excision repair in vivo. Mutagenesis 25, 77–82 (2010).

    PubMed  Google Scholar 

  90. Azqueta, A. et al. A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol. Vitr. 27, 768–773 (2013).

    CAS  Google Scholar 

  91. Brauner, E. V. et al. Exposure to ultrafine particles from ambient air and oxidative stress-induced DNA damage. Environ. Health Perspect. 115, 1177–1182 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Moller, P. et al. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals. Environ. Mol. Mutagen. 56, 97–110 (2015).

    CAS  PubMed  Google Scholar 

  93. Hasplova, K. et al. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD). Toxicol. Lett. 208, 76–81 (2012).

    CAS  PubMed  Google Scholar 

  94. Dusinska, M. et al. Testing strategies for the safety of nanoparticles used in medical applications. Nanomed. (Lond.) 4, 605–607 (2009).

    Google Scholar 

  95. Choi, S. W., Yeung, V. T., Collins, A. R. & Benzie, I. F. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis 30, 129–137 (2015).

    CAS  PubMed  Google Scholar 

  96. Brevik, A. et al. Supplementation of a Western diet with golden kiwifruits (Actinidia chinensis var.‘Hort 16A’): effects on biomarkers of oxidation damage and antioxidant protection. Nutr. J. 10, 54 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hanova, M. et al. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers. Toxicol. Appl. Pharmacol. 248, 194–200 (2010).

    CAS  PubMed  Google Scholar 

  98. Humphreys, V. et al. Age-related increases in DNA repair and antioxidant protection: a comparison of the Boyd Orr Cohort of elderly subjects with a younger population sample. Age Ageing 36, 521–526 (2007).

    PubMed  Google Scholar 

  99. Langie, S. A. et al. Modulation of nucleotide excision repair in human lymphocytes by genetic and dietary factors. Br. J. Nutr. 103, 490–501 (2010).

    CAS  PubMed  Google Scholar 

  100. Al-Serori, H. et al. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells. PLoS One 13, e0193677 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Soares, J. P. et al. Effects of combined physical exercise training on DNA damage and repair capacity: role of oxidative stress changes. Age (Dordr.) 37, 9799 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank the hCOMET project (COST Action, CA 15132) for support. A.A. thanks the Ministry of Economy, Industry and Competitiveness (‘Ramón y Cajal’ programme, RYC2013-14370) of the Spanish Government for personal support. P.V. acknowledges support from the National Science Foundation (19-10543S).

Author information

Authors and Affiliations

Authors

Contributions

S.V., A.A., R.W.L.G. and S.A.S.L. designed figures; S.A.S.L. provided anticipated results and managed the manuscript preparation; S.V., A.A. and S.A.S.L. drafted the paper; and A.C., M.D., P.M. A.O., I.G. and P.V. contributed to and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sabine A. S. Langie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Ricard Marcos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Related links

Key references using this protocol

Gaivão, I., Piasek, A., Brevik, A., Shaposhnikov, S. & Collins, A. R. Cell Biol. Toxicol. 25, 45–52 (2009): https://doi.org/10.1007/s10565-007-9047-5

Langie, S. A. et al. Mutagenesis 26, 461–471 (2011): https://doi.org/10.1093/mutage/ger005

Slyskova, J. et al. Clin. Cancer Res. 18, 5878–5887 (2012): https://doi.org/10.1158/1078-0432.CCR-12-1380

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodenkova, S., Azqueta, A., Collins, A. et al. An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat Protoc 15, 3844–3878 (2020). https://doi.org/10.1038/s41596-020-0401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0401-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research