Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical transduction and routing of microwave phonons in cavity-optomechanical circuits

Abstract

Going beyond the canonical cavity-optomechanical system consisting of a Fabry–Perot cavity with a movable end mirror, here we explore a new paradigm in which phononic crystal waveguides are used to wire together local cavity elements to form interacting microcircuits of photons and phonons. Single cavity-waveguide elements, fabricated in the device layer of a silicon-on-insulator microchip, are used to optically excite and detect C-band (6 GHz) microwave phonons propagating in phononic-bandgap-guided acoustic waveguides. Interconnecting a pair of optomechanical cavities via a phonon waveguide is then used to demonstrate a tunable delay and filter for microwave-over-optical signals in the 1,500 nm wavelength band. Finally, we realize a tight-binding form of mechanical coupling between distant optomechanical cavities, leading to direct phonon exchange without dissipation in the waveguide. These initial demonstrations indicate the potential of cavity-optomechanical circuits for performing coherent signal processing as well as for realizing new modalities of optical readout in distributed micromechanical sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gigahertz dispersion-engineerable phonon waveguide.
Figure 2: Microwave signal processing using optomechanical cavity-waveguide system.
Figure 3: Pulsed and c.w. signal propagation.
Figure 4: Waveguide-mediated distant mechanical coupling.

Similar content being viewed by others

References

  1. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  2. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 468, 89–92 (2011).

    Article  ADS  Google Scholar 

  3. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  ADS  Google Scholar 

  4. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    Article  ADS  Google Scholar 

  5. Weis, S. et al. Optomechanically-induced transparency. Science 330, 1520–1523 (2010).

    Article  ADS  Google Scholar 

  6. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    Article  ADS  Google Scholar 

  7. Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011).

    Article  ADS  Google Scholar 

  8. Habraken, S. J. M., Stannigel, K., Lukin, M. D., Zoller, P. & Rabl, P. Continuous mode cooling and phonon routers for phononic quantum networks. New J. Phys. 14, 115004 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  9. Schmidt, M., Ludwig, M. & Marquardt, F. Optomechanical circuits for nanomechanical continuous variable quantum state processing. New J. Phys. 14, 125005 (2012).

    Article  ADS  Google Scholar 

  10. Maldovan, M. & Thomas, E. L. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl. Phys. Lett. 88, 251907 (2006).

    Article  ADS  Google Scholar 

  11. Balram, K. C., Davanco, M., Song, J. D. & Srinivasan, K. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits. Nature Photon. 10, 346–353 (2016).

    Article  ADS  Google Scholar 

  12. Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P. & Laude, V. Tailoring simultaneous photonic and phononic band gaps. J. Appl. Phys. 106, 074912 (2009).

    Article  ADS  Google Scholar 

  13. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article  ADS  Google Scholar 

  14. Safavi-Naeini, A. H. & Painte, O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab. Opt. Express 18, 14926–14943 (2010).

    Article  ADS  Google Scholar 

  15. Gomis-Bresco, J. et al. A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Commun. 5, 4452 (2014).

    Article  ADS  Google Scholar 

  16. Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nature Photon. 6, 56–61 (2012).

    Article  ADS  Google Scholar 

  17. van Loo, A. F. et al. Photon-mediated interactions between distant artificial atoms. Science 342, 1494–1496 (2013).

    Article  ADS  Google Scholar 

  18. Stannigel, K., Rabl, P., Sørensen, A. S., Zoller, P. & Lukin, M. D. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010).

    Article  ADS  Google Scholar 

  19. Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity-optomechanics. Nature Commun. 3, 1196 (2012).

    Article  ADS  Google Scholar 

  20. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nature Phys. 9, 712–716 (2013).

    Article  ADS  Google Scholar 

  21. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nature Phys. 10, 321–326 (2014).

    Article  ADS  Google Scholar 

  22. Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).

    Article  ADS  Google Scholar 

  23. Rabl, P. et al. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nature Phys. 6, 602–608 (2010).

    Article  ADS  Google Scholar 

  24. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photon. 6, 782–787 (2012).

    Article  ADS  Google Scholar 

  25. Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).

    Google Scholar 

  26. Schmidt, M., Keßler, S., Peano, V., Painter, O. & Marquardt, F. Optomechanical creation of magnetic fields for photons on a lattice. Optica 2, 635–641 (2015).

    Article  ADS  Google Scholar 

  27. Mohammadi, S. & Adibi, A. On chip complex signal processing devices using coupled phononic crystal slab resonators and waveguides. AIP Adv. 1, 041903 (2011).

    Article  ADS  Google Scholar 

  28. Otsuka, P. H. et al. Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces. Sci. Rep. 3, 3351 (2013).

    Article  Google Scholar 

  29. Hatanaka, D., Mahboob, I., Onomitsu, K. & Yamaguchi, H. Phonon waveguides for electromechanical circuits. Nature Nanotech. 9, 520–524 (2014).

    Article  ADS  Google Scholar 

  30. Hatanaka, D., Dodel, A., Mahboob, I., Onomitsu, K. & Yamaguchi, H. Phonon propagation dynamics in band-engineered one-dimensional phononic crystal waveguides. Preprint at http://arxiv.org/abs/1502.04855 (2015).

  31. O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  ADS  Google Scholar 

  32. Lanz, R. Piezoelectric Thin Films for Bulk Acoustic Wave Resonator Applications: From Processing to Microwave Filters PhD thesis, École Polytechnique Fédérale de Lausanne (2004).

  33. Mohammadi, S. & Adibi, A. Waveguide-based phononic crystal micro/nanomechanical high-resonators. J. Microelectromech. Syst. 21, 379–384 (2012).

    Article  Google Scholar 

  34. Li, H., Tadesse, S., Liu, Q. & Li, M. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica 2, 826–831 (2015).

    Article  ADS  Google Scholar 

  35. Shin, H. et al. Control of coherent information via on chip photonic–phononic emitter–receivers. Nature Commun. 6, 6427 (2015).

    Article  ADS  Google Scholar 

  36. Laer, R. V., Kuyken, B., Thourhout, D. V. & Baets, R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nature Photon. 9, 199–203 (2015).

    Article  ADS  Google Scholar 

  37. Merklein, M. et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nature Commun. 6, 6396 (2015).

  38. Gröblacher, S., Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity. App. Phys. Lett. 108, 181104 (2013).

    Article  ADS  Google Scholar 

  39. Comsol multiphysics 3.5; http://www.comsol.com/

  40. Baba, T. Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    Article  ADS  Google Scholar 

  41. Dai, Y. & Yao, J. Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response. IEEE Photon. Technol. Lett. 21, 569–571 (2009).

    Article  ADS  Google Scholar 

  42. Kippenberg, T. & Vahala, K. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007).

    Article  ADS  Google Scholar 

  43. Capmany, J., Ortega, B. & Pastor, D. A tutorial on microwave photonic filters. J. Lightw. Technol. 24, 201–229 (2006).

    Article  ADS  Google Scholar 

  44. Chan, E. H. W., Minasian, R. A. & Abstract, A. Coherence-free high-resolution rf/microwave photonic bandpass filter with high skirt selectivity and high stopband attenuation. J. Lightw. Technol. 28, 1646–1651 (2010).

    Article  ADS  Google Scholar 

  45. Safavi-Naeini, A. H. et al. Two-dimensional phononic–photonic bandgap optomechanical crystal cavity. Phys. Rev. Lett. 112, 153603 (2014).

    Article  ADS  Google Scholar 

  46. Heinrich, G., Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011).

    Article  ADS  Google Scholar 

  47. Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).

    Google Scholar 

  48. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article  ADS  Google Scholar 

  49. Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nature Nanotech. 9, 577–587 (2014).

    Article  ADS  Google Scholar 

  50. Hennessy, K., Högerle, C., Hu, E., Badolato, A. & Imamoğlu, A. Tuning photonic nanocavities by atomic force microscope nano-oxidation. App. Phys. Lett. 89, 041118 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Cohen and S. Meenehan for help with device fabrication and design. This work was supported by the Air Force Office of Scientific Research Hybrid Nanophotonics Multi-University Research Initiative, Defense Advanced Projects Agency ORCHID and MESO programmes, the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center, with support from the Gordon and Betty Moore Foundation and the Kavli Nanoscience Institute at Caltech.

Author information

Authors and Affiliations

Authors

Contributions

O.P., K.F. and M.H.M. planned the experiment. K.F. and M.H.M. performed device design and fabrication. K.F., X.L. and M.H.M. performed the measurements. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Oskar Painter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, K., Matheny, M., Luan, X. et al. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nature Photon 10, 489–496 (2016). https://doi.org/10.1038/nphoton.2016.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.107

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing