Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron

Abstract

Iron-deficiency anaemia (IDA) is a major global public health problem1. A sustainable and cost-effective strategy to reduce IDA is iron fortification of foods2, but the most bioavailable fortificants cause adverse organoleptic changes in foods3,4. Iron nanoparticles are a promising solution in food matrices5,6,7, although their tendency to oxidize and rapidly aggregate in solution severely limits their use in fortification8. Amyloid fibrils are protein aggregates initially known for their association with neurodegenerative disorders, but recently described in the context of biological functions in living organisms9,10,11,12,13 and emerging as unique biomaterial building blocks14,15,16. Here, we show an original application for these protein fibrils as efficient carriers for iron fortification. We use biodegradable amyloid fibrils from β-lactoglobulin, an inexpensive milk protein with natural reducing effects17, as anti-oxidizing nanocarriers and colloidal stabilizers for iron nanoparticles. The resulting hybrid material forms a stable protein–iron colloidal dispersion that undergoes rapid dissolution and releases iron ions during acidic and enzymatic in vitro digestion. Importantly, this hybrid shows high in vivo iron bioavailability, equivalent to ferrous sulfate in haemoglobin-repletion and stable-isotope studies in rats, but with reduced organoleptic changes in foods. Feeding the rats with these hybrid materials did not result in abnormal iron accumulation in any organs, or changes in whole blood glutathione concentrations, inferring their primary safety. Therefore, these iron–amyloid fibril hybrids emerge as novel, highly effective delivery systems for iron in both solid and liquid matrices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reducing effect of BLG fibrils on iron.
Figure 2: Schematic illustrations and experimental results of contrast-matching small angle neutron scattering (SANS) on iron–BLG fibril hybrid suspensions.
Figure 3: In vitro acidic/enzymatic digestion of iron–BLG fibrils characterized by TEM, SANS and EDX.
Figure 4: Animal study design, Hb changes given by Fe–FibBLG and Fe-Nano, and colour changes after fortification.

Similar content being viewed by others

References

  1. Kassebaum, N. J. et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 123, 615–624 (2013).

    Article  Google Scholar 

  2. Zimmermann, M. B. & Hurrell, R. F. Nutritional iron deficiency. Lancet 370, 511–520 (2007).

    Article  CAS  Google Scholar 

  3. Allen, L., de Benoist, B., Dary, O. & Hurrell, R. Guidelines on Food Fortification with Micronutrients (World Health Organization, 2006).

    Google Scholar 

  4. Hurrell, R. F. Forging effective strategies to combat iron deficiency fortification: overcoming technical and practical barriers. Heal. Promot. 1, 806–812 (2002).

    Google Scholar 

  5. Acosta, E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid Interface Sci. 14, 3–15 (2009).

    Article  CAS  Google Scholar 

  6. Rohner, F. et al. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr. 137, 614–619 (2007).

    Article  CAS  Google Scholar 

  7. Hilty, F. M. et al. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat. Nanotech. 5, 374–380 (2010).

    Article  CAS  Google Scholar 

  8. Huber, D. L. Synthesis, properties, and applications of iron nanoparticles. Small 1, 482–501 (2005).

    Article  CAS  Google Scholar 

  9. Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    Article  CAS  Google Scholar 

  10. Iconomidou, V. A., Vriend, G. & Hamodrakas, S. J. Amyloids protect the silkmoth oocyte and embryo. FEBS Lett. 479, 141–145 (2000).

    Article  CAS  Google Scholar 

  11. Maddelein, M.-L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B. & Saupe, S. J. Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl Acad. Sci. USA 99, 7402–7407 (2002).

    Article  CAS  Google Scholar 

  12. Fowler, D. M. et al. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, 0100–0107 (2006).

    Article  CAS  Google Scholar 

  13. Maji, S. K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009).

    Article  CAS  Google Scholar 

  14. Li, C., Adamcik, J. & Mezzenga, R. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat. Nanotech. 7, 421–427 (2012).

    Article  CAS  Google Scholar 

  15. Bolisetty, S. & Mezzenga, R. Amyloid–carbon hybrid membranes for universal water purification. Nat. Nanotech. 11, 365–371 (2016).

    Article  CAS  Google Scholar 

  16. Knowles, T. P. J. & Mezzenga, R. Amyloid fibrils as building blocks for natural and artificial functional materials. Adv. Mater. 28, 6546–6561 (2016).

    Article  CAS  Google Scholar 

  17. Bolisetty, S. et al. Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions. J. Colloid Interface Sci. 361, 90–96 (2011).

    Article  CAS  Google Scholar 

  18. Michaels, L. & Guzman Barron, E. S. Cysteine complexes with metals. J. Biochem. 83, 191–210 (1929).

    Google Scholar 

  19. Brosnan, J. & Brosnan, M. The sulfur-containing amino acids: an overview. J. Nutr. 136, 16365–16405 (2006).

    Google Scholar 

  20. Giles, N. M. et al. Metal and redox modulation of cysteine protein function. Chem. Biol. 10, 677–693 (2003).

    Article  CAS  Google Scholar 

  21. Akkermans, C. et al. Peptides are building blocks of heat-induced fibrillar protein aggregates of β-lactoglobulin formed at pH 2. Biomacromolecules 9, 1474–1479 (2008).

    Article  CAS  Google Scholar 

  22. Hallberg, L., Brune, M. & Rossander, L. Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. Am. J. Clin. Nutr. 49, 140–144 (1989).

    Article  CAS  Google Scholar 

  23. Hurrell, R. F., Reddy, M. & Cook, J. D. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br. J. Nutr. 81, 289–295 (1999).

    Article  CAS  Google Scholar 

  24. Hallberg, L., Brune, M., Erlandsson, M., Sandberg, A.-S. & Rossander-Hulten, L. Calcium: effect of different amounts on nonheme- and heme-iron absorption in humans. Am. J. Clin. Nutr. 53, 112–119 (1991).

    Article  CAS  Google Scholar 

  25. Adamcik, J. et al. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat. Nanotech. 5, 423–428 (2010).

    Article  CAS  Google Scholar 

  26. Leal, S. S., Botelho, H. M. & Gomes, C. M. Metal ions as modulators of protein conformation and misfolding in neurodegeneration. Coord. Chem. Rev. 256, 2253–2270 (2012).

    Article  CAS  Google Scholar 

  27. Zhou, J. et al. Preparation and characterization of β-lactoglobulin hydrolysate-iron complexes. J. Dairy Sci. 95, 4230–4236 (2012).

    Article  CAS  Google Scholar 

  28. Sun, Y.-P., Li, X., Cao, J., Zhang, W. & Wang, H. P. Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 120, 47–56 (2006).

    Article  CAS  Google Scholar 

  29. Bateman, L., Ye, A. & Singh, H. In vitro digestion of β-lactoglobulin fibrils formed by heat treatment at low pH. J. Agric. Food Chem. 58, 9800–9808 (2010).

    Article  CAS  Google Scholar 

  30. Cunniff, P. & AOAC. in Official Methods of Analysis of AOAC International 62–63 (AOAC International, 1997).

  31. Forbes, A. L. et al. Comparison of in vitro, animal, and clinical determinations of iron bioavailability: International Nutritional Anemia Consultative Group Task Force report on iron bioavailability. Am. jounal Clin. Nutr. 49, 225–238 (1989).

    Article  CAS  Google Scholar 

  32. Hurrell, R. Linking the bioavailability of iron compounds to the efficacy of iron-fortified foods. Int. J. Vitam. Nutr. Res. 77, 166–173 (2007).

    Article  CAS  Google Scholar 

  33. Jung, J. M. & Mezzenga, R. Liquid crystalline phase behavior of protein fibers in water: experiments versus theory. Langmuir 26, 504–514 (2010).

    Article  CAS  Google Scholar 

  34. Li, X., Elliott, D. W. & Zhang, W. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State Mater. Sci. 31, 111–122 (2006).

    Article  CAS  Google Scholar 

  35. Amar-Yuli, I. et al. Templating effects of lyotropic liquid crystals in the encapsulation of amyloid fibrils and their stimuli-responsive magnetic behavior. Soft Matter 7, 3348–3357 (2011).

    Article  CAS  Google Scholar 

  36. Hoffmann, M. A. M. & van Mil, P. J. J. M. Heat-induced aggregation of β-lactoglobulin: role of the free thiol group and disulfide bonds. J. Agric. Food Chem. 45, 2942–2948 (1997).

    Article  CAS  Google Scholar 

  37. Gao, G.-Q. & Xu, A.-W. A new fluorescent probe for monitoring amyloid fibrillation with high sensitivity and reliability. RSC Adv. 3, 21092–21098 (2013).

    Article  CAS  Google Scholar 

  38. Lara, C., Adamcik, J., Jordens, S. & Mezzenga, R. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12, 1868–1875 (2011).

    Article  CAS  Google Scholar 

  39. Bolisetty, S., Vallooran, J. J., Adamcik, J. & Mezzenga, R. Magnetic-responsive hybrids of Fe3O4 nanoparticles with β-lactoglobulin amyloid fibrils and nanoclusters. ACS Nano 7, 6146–6155 (2013).

    Article  CAS  Google Scholar 

  40. Sears, V. F. Neutron scattering lengths and cross sections. Neutron News 3, 26–37 (1992).

    Article  Google Scholar 

  41. Breßler, I., Kohlbrecher, J. & Thünemann, A. F. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions. J. Appl. Crystallogr. 48, 1587–1598 (2015).

    Article  Google Scholar 

  42. Reeves, P. G. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951 (1993).

    Article  CAS  Google Scholar 

  43. Rahman, I., Kode, A. & Biswas, S. K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1, 3159–3165 (2007).

    Article  Google Scholar 

  44. Toblli, J. E., Cao, G., Olivieri, L. & Angerosa, M. Comparative study of gastrointestinal tract and liver toxicity of ferrous sulfate, iron amino chelate and iron polymaltose complex in normal rats. Pharmacology 82, 127–137 (2008).

    Article  CAS  Google Scholar 

  45. Brown, B. E. et al. Red cell, plasma, and blood volume in healthy women measured by radiochromium cell-labeling and hematocrit. J. Clin. Invest. 41, 2182–2190 (1962).

    Article  CAS  Google Scholar 

  46. Lee, H. B. & Blaufox, M. D. Blood volume in the rat. J. Nucl. Med. 25, 72–76 (1985).

    Google Scholar 

  47. Walczyk, T. Iron isotope ratio measurements by negative thermal ionisation mass spectrometry using FeF4 molecular ions. Int. J. Mass Spectrom. Ion Process. 161, 217–227 (1997).

    Article  CAS  Google Scholar 

  48. Walczyk, T., Davidsson, L., Zavaleta, N. & Hurrell, R. F. Stable isotope labels as a tool to determine the iron absorption by Peruvian school children from a breakfast meal. Fresenius J. Anal. Chem. 359, 1588–1590 (1997).

    Article  Google Scholar 

  49. Lopes, T. J. S. et al. Systems analysis of iron metabolism: the network of iron pools and fluxes. BMC Syst. Biol. 4, 1–18 (2010).

    Article  Google Scholar 

  50. Hotz, K., Krayenbuehl, P. & Walczyk, T. Mobilization of storage iron is reflected in the iron isotopic composition of blood in humans. JBIC J. Biol. Inorg. Chem. 17, 301–309 (2012).

    Article  CAS  Google Scholar 

  51. Hurrell, R. F. Ferrous fumarate fortification of a chocolate drink powder. Br. J. Nutr. 65, 271–283 (1991).

    Article  CAS  Google Scholar 

  52. Fidler, M. C., Krzystek, A., Walczyk, T. & Hurrell, R. F. Photostability of sodium iron ethylenediaminetetraacetic acid (NaFeEDTA) in stored fish sauce and soy sauce. J. Food Sci. 69, S380–S383 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Cercamondi and C. Speich for their help in the sensory studies; A. Sánchez-Ferrer (ETHZ) for discussions on the reducing effect, F. Gramm (ETHZ) for EDX detection and STEM imaging, and the support from the ETHZ Microscopy Center (ScopeM). Authors gratefully thank for their support during the animal study: E. Kemp, H. Bunnting, C. Zeder and A. Fick. We acknowledge help from C. Zeder, A. Krzystek and T. Christ for the isotope analyses. We furthermore thank L. Molinari for performing the statistical analyses and J. Lam for the assistance in the sensory experiments. N. Spencer is gratefully acknowledged for the use of the XPS spectrometer and Mr. Cossu is thanked for the technical assistance. This work was supported by the Swiss National Science Foundation, National Research Program 69, grant number 406940-144166-1.

Author information

Authors and Affiliations

Authors

Contributions

R.M. conceived the study. Y.S. and L.P. performed the experiments. Y.S., L.P., S.B., F.M.H., J.B., M.B.Z. and R.M. designed the experiments. Y.S. produced the materials. Y.S. performed reducing effect and in vitro digestion experiments. Y.S. and G.N. imaged the material under TEM. Y.S., S.B. and J.K. performed neutron scattering experiments and analysed the data. Y.S. and A.R. performed XPS experiments and analysed the data. L.P. and Y.S. performed animal studies, data analysis and sensory performance experiments. M.H. performed histology assessments. Y.S., L.P., R.M. and M.B.Z. co-wrote the paper.

Corresponding authors

Correspondence to Michael B. Zimmermann or Raffaele Mezzenga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Posavec, L., Bolisetty, S. et al. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nature Nanotech 12, 642–647 (2017). https://doi.org/10.1038/nnano.2017.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.58

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research