Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain

Abstract

Ferroelectric materials are used in applications ranging from energy harvesting to high-power electronic transducers1. However, industry-standard ferroelectric materials contain lead, which is toxic and environmentally unfriendly2. The preferred alternative, BaTiO3, is non-toxic and has excellent ferroelectric properties, but its Curie temperature of 130 °C is too low to be practical3. Strain has been used to enhance the Curie temperature of BaTiO3 (ref. 4) and SrTiO3 (ref. 5) films, but only for thicknesses of tens of nanometres, which is not thick enough for many device applications. Here, we increase the Curie temperature of micrometre-thick films of BaTiO3 to at least 330 °C, and the tetragonal-to-cubic structural transition temperature to beyond 800 °C, by interspersing stiff, self-assembled vertical columns of Sm2O3 throughout the film thickness. The columns, which are 10 nm in diameter, strain the BaTiO3 matrix by 2.35%, forcing it to maintain its tetragonal structure and resulting in the highest BaTiO3 transition temperatures so far.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembled vertical nanostructure.
Figure 2: Enhanced tetragonality at elevated temperature.
Figure 3: Direct electrical measurements.

Similar content being viewed by others

References

  1. Haertling, G. H. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999).

    Article  CAS  Google Scholar 

  2. Maeder, M. D., Damjanovic, D. & Setter, N. Lead free piezoelectric materials. J. Electroceramics 13, 385–392 (2004).

    Article  CAS  Google Scholar 

  3. Takenaka, T. & Nagata, H. Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25, 2693–2700 (2005).

    Article  CAS  Google Scholar 

  4. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    Article  CAS  Google Scholar 

  5. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  6. Wang, H. & Ren, M. Synthesis and ferroelectric properties of SrBi2Ta2O9/Bi4Ti3O12/p-Si multilayer thin films by sol–gel. J. Mater. Sci. Mater. Electron. 17, 165–169 (2006).

    Article  CAS  Google Scholar 

  7. Qi, X. D., Dho, J., Tomov, R., Blamire, M. G. & MacManus-Driscoll, J. L. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3 . Appl. Phys. Lett. 86, 062903 (2005).

    Article  Google Scholar 

  8. Takenaka, T., Nagata, H., Hiruma, Y., Yoshii, Y. & Matumoto, K. Lead-free piezoelectric ceramics based on perovskite structures. J. Electroceram. 19, 259–265 (2007).

    Article  CAS  Google Scholar 

  9. Gomah-Pettry, J. R., Saïd, S., Marchet, P. & Mercurio, J. P. Sodium-bismuth titanate based lead-free ferroelectric materials. J. Eur. Ceram. Soc. 24, 1165–1169 (2004).

    Article  CAS  Google Scholar 

  10. Wimbush, S. C. et al. Interfacial strain-induced oxygen disorder as the cause of enhanced critical current density in superconducting thin films. Adv. Funct. Mater. 19, 835–841 (2009).

    Article  CAS  Google Scholar 

  11. Nagarajan, V. et al. Misfit dislocations in nanoscale ferroelectric heterostructures. Appl. Phys. Lett. 86, 192910 (2005).

    Article  Google Scholar 

  12. Moshnyaga, V. et al. Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1–x:(MgO)x nanocomposite films. Nature Mater. 2, 247–252 (2003).

    Article  CAS  Google Scholar 

  13. Macmanus-Driscoll, J. L. et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x+BaZrO3 . Nature Mater. 3, 439–443 (2004).

    Article  CAS  Google Scholar 

  14. Aggarwal, S. et al. Spontaneous ordering of oxide nanostructures. Science. 287, 2235–2237 (2000).

    Article  CAS  Google Scholar 

  15. Zavaliche, F. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005).

    Article  CAS  Google Scholar 

  16. Fouchet, A. et al. Spontaneous ordering, strain control, and multifunctionality in vertical nancomposite heteroepitaxial films. IEEE Trans. Ultrason. Ferr. 56, 1534–1538 (2009).

    Article  Google Scholar 

  17. MacManus-Driscoll, J. L. et al. Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nature Mater. 7, 314–320 (2008).

    Article  CAS  Google Scholar 

  18. Yang, H. et al. Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv. Mater. 21, 3794–3798 (2009).

    Article  CAS  Google Scholar 

  19. Munro, R. G. Elastic Moduli Data for Polycrystalline Ceramics 6853 (NISTIR, 2002).

  20. IEEE. Proceedings of the 5th International Symposium on Micro Machine and Human Science 75 (Nagoya, 1994).

  21. MacManus-Driscoll, J. L. Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035–2045 (2010).

    Article  CAS  Google Scholar 

  22. Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    Article  CAS  Google Scholar 

  23. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    Article  CAS  Google Scholar 

  24. Megaw, H. D. Origin of ferroelectricity in barium titanate and other perovskite-type crystals. Acta Cryst. 5, 739–749 (1952).

    Article  CAS  Google Scholar 

  25. Kuwabara, M., Goda, K. & Oshima, K. Coexistence of normal and diffuse ferroelectric-paraelectric phase transitions in (Pb,La)TiO3 ceramics. Phys. Rev. B. 42, 10012–10015 (1990).

    Article  CAS  Google Scholar 

  26. Shintani, Y. & Tada, O. Preparation of thin BaTiO3 films by DC diode sputtering. J. Appl. Phys. 41, 2376–2380 (1970).

    Article  CAS  Google Scholar 

  27. Iijima, K., Terashima, T., Yamamoto, K., Hirata, K. & Bando, Y. Preparation of ferroelectric BaTiO3 thin-films by activated reactive evaporation. Appl. Phys. Lett. 56, 527–529 (1990).

    Article  CAS  Google Scholar 

  28. Yoneda, Y. et al. Ferroelectric phase-transition in BaTiO3 films. J. Phys. Soc. Jpn 62, 1840–1843 (1993).

    Article  CAS  Google Scholar 

  29. Nose, T., Kim, H. T. & Uwe, H. Dielectric property of epitaxial-films of BaTiO3 synthesized by laser-ablation. Jpn J. Appl. Phys. 1 33, 5259–5261 (1994).

    Article  CAS  Google Scholar 

  30. Abe, K., Komatsu, S., Yanase, N., Sano, K. & Kawakubo, T. Asymmetric ferroelectricity and anomalous current conduction in heteroepitaxial BaTiO3 films. Jpn. J. Appl. Phys. 36, 5846–5853 (1997).

    Article  CAS  Google Scholar 

  31. Jaffe, B., Cook, W. R. Jr & Jaffe, H. Piezoelectric Ceramics (Academic, 1971).

  32. Hong, J. W. & Fang, D. N. Size-dependent ferroelectric behaviours of BaTiO3 nanowires. Appl. Phys. Lett. 92, 012906 (2008).

    Article  Google Scholar 

  33. Megaw, H. D. Crystal structure of barium titanate. Nature 155, 484–485 (1945).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Fouchet for his assistance with preliminary studies. The work was supported by Downing College Cambridge, the European Commission (Marie Curie Excellence Grant ‘NanoFen’, MEXT-CT-2004-014156), European Research Council (ERC) (grant no. ERC-2009-adG 247276), UK Engineering and Physical Sciences Research Council and US National Science Foundation (NSF 07-09831 and ECCS-0708759). We wish to acknowledge the use of the Chemical Database Service at Daresbury and help from the US Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development programme and the Center for Integrated Nanotechnologies.

Author information

Authors and Affiliations

Authors

Contributions

H.W. and Z.B. collected and analysed TEM images. V.G. and S.D. were responsible for SHG data. C.B.E., S.A.T.R., S.H.B. and C.W.B. were responsible for high-temperature XRD measurements. J.Z. advised on direct electrical measurements. M.E.V. and Q.J. discussed the results and commented on the manuscript. S.A.H. prepared films, collected room-temperature XRD data, performed direct electrical measurements and analysed data. S.A.H. and J.L.M. co-wrote the manuscript.

Corresponding author

Correspondence to Sophie A. Harrington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrington, S., Zhai, J., Denev, S. et al. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nature Nanotech 6, 491–495 (2011). https://doi.org/10.1038/nnano.2011.98

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing