Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Liquid glass electrodes for nanofluidics

Abstract

Nanofluidic devices make use of molecular-level forces and phenomena to increase their density, speed and accuracy1. However, fabrication is challenging, because dissimilar materials need to be integrated in three dimensions with nanoscale precision. Here, we report a three-dimensional nanoscale liquid glass electrode made from monolithic substrates without conductive materials by femtosecond-laser nanomachining. The electrode consists of a nanochannel terminating at a nanoscale glass tip that becomes a conductor in the presence of high electric fields through dielectric breakdown, and returns to being an insulator when this field is removed. This reversibility relies on control of nanoampere breakdown currents and extremely fast heat dissipation at nanoscale volumes. We use the nanoscale liquid glass electrode to fabricate a nano-injector that includes an electrokinetic pump, 4 µm across with 0.6 µm channels, which is capable of producing well-controlled flow rates below 1 fl s−1. The electrode can be integrated easily into other nanodevices and fluidic systems, including actuators and sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible dielectric breakdown across a thin glass wall separating two channels (that is, an NLGE).
Figure 2: Simulation results with electric potentials ranging from 10 to 160 V.
Figure 3: Prototype nano-injector driven by a single NLGE EK pump.

Similar content being viewed by others

References

  1. Schoch, R. B., Han, J. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008).

    Article  CAS  Google Scholar 

  2. Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    Article  CAS  Google Scholar 

  3. Saleh, O. A. & Sohn, L. L. Quantitative sensing of nanoscale colloids using a microchip Coulter counter. Rev. Sci. Instrum. 72, 4449–4451 (2001).

    Article  CAS  Google Scholar 

  4. Chang, H.-C. & Yossifon, G. Understanding electrokinetics at the nanoscale: a perspective. Biomicrofluidics 3, 012001 (2009).

    Article  Google Scholar 

  5. Fu, J., Schoch, R. B., Stevens, A. L., Tannenbaum, S. R. & Han, J. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nature Nanotech. 2, 121–128 (2007).

    Article  CAS  Google Scholar 

  6. Wang, Y., Stevens, A. L. & Han, J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299 (2005).

    Article  CAS  Google Scholar 

  7. Karnik, R., Castelino, K., Fan, R., Yang, P. & Majumdar, A. Effects of biological reactions and modifications on conductance of nanofluidic channels. Nano Lett. 5, 1638–1642 (2005).

    Article  CAS  Google Scholar 

  8. Zhou, K., Kovarik, M. L. & Jacobson, S. C. Surface-charge induced ion depletion and sample stacking near single nanopores in microfluidic devices. J. Am. Chem. Soc. 130, 8614–8616 (2008).

    Article  CAS  Google Scholar 

  9. Joglekar, A. P., Liu, H., Meyhöfer, E., Mourou, G. & Hunt, A. J. Optics at critical intensity: applications to nanomorphing. Proc. Natl Acad. Sci. USA 101, 5856–5861 (2004).

    Article  CAS  Google Scholar 

  10. Kim, T. N., Campbell, K., Groisman, A., Kleinfeld, D. & Schaffer, C. B. Femtosecond laser-drilled capillary integrated into a microfluidic device. Appl. Phys. Lett. 86, 201106 (2005).

    Article  Google Scholar 

  11. McDonald, J. P., Mistry, V. R., Ray, K. E. & Yalisove, S. M. Femtosecond pulsed laser direct write production of nano- and microfluidic channels. Appl. Phys. Lett. 88, 183113 (2006).

    Article  Google Scholar 

  12. Ke, K., Hasselbrink, E. F. & Hunt, A. J. Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates. Anal. Chem. 77, 5083–5088 (2005).

    Article  CAS  Google Scholar 

  13. Lee, S., Bull, J. L. & Hunt, A. J. Acoustic limitations on the efficiency of machining by femtosecond laser-induced optical breakdown. Appl. Phys. Lett. 91, 023111 (2007).

    Article  Google Scholar 

  14. Harrison, D. J., Manz, A., Fan, Z. H., Ludi, H. & Widmer, H. M. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64, 1926–1932 (1992).

    Article  CAS  Google Scholar 

  15. Takamura, Y. et al. Low-voltage electroosmosis pump for stand-alone microfluidics devices. Electrophoresis 24, 185–192 (2003).

    Article  CAS  Google Scholar 

  16. Hong, C. C. et al. A functional on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip. Lab Chip 3, 281–286 (2003).

    Article  CAS  Google Scholar 

  17. Baldock, S. J., Fielden, P. R., Goddard, N. J., Prest, J. E. & Treves Brown, B. J. Integrated moulded polymer electrodes for performing conductivity detection on isotachophoresis microdevices. Chromatogr. A 990, 11–22 (2003).

    Article  CAS  Google Scholar 

  18. Hebert, N. E., Snyder, B., McCreery, R. L., Kuhr, W. G. & Brazill, S. A. Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. Anal. Chem. 75, 4265–4271 (2003).

    Article  CAS  Google Scholar 

  19. Wu, C. C., Wu, R. G., Huang, J. G., Lin, Y. C. & Chang, H.-C. Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection. Anal. Chem. 75, 947–952 (2003).

    Article  CAS  Google Scholar 

  20. Baldwin, R. P. et al. Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device. Anal. Chem. 74, 3690–3697 (2002).

    Article  CAS  Google Scholar 

  21. Laugere, F. et al. On-chip contactless four-electrode conductivity detection for capillary electrophoresis devices. Anal. Chem. 75, 306–312 (2003).

    Article  CAS  Google Scholar 

  22. Paul, P. H., Garguilo, M. G. & Rakestraw, D. J. Imaging of pressure- and electrokinetically driven flows through open capillaries. Anal. Chem. 70, 2459–2467 (1998).

    Article  CAS  Google Scholar 

  23. Probstein, R. F. Physicochemical Hydrodynamics 2nd edn (Wiley-Interscience, 2003).

  24. Pu, Q., Yun, J., Temkin, H. & Liu, S. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4(6), 1099–1103 (2004).

    Article  Google Scholar 

  25. Eijkel, J. C. T. & Van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfl. Nanofl. 1, 249–267 (2005).

    Article  CAS  Google Scholar 

  26. Chau, R. S. Intel's breakthrough in high-K gate dielectric drives Moore's Law well into the future. Technology@Intel Magazine, 1–7 (2004).

  27. Sune, J., Nafria, M. & Aymerich, X. Reversible dielectric breakdown of thin gate oxides in mos devices. Microelectron. Reliab. 33, 1031–1039 (1993).

    Article  Google Scholar 

  28. Gamow, G. Matter, Earth & Sky rev. edn (Prentice-Hall, 1965).

  29. Reichmuth, D. S., Chirica, G. S. & Kirby, B. J. Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives. Sens. Actuat. B 92, 37–43 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Yalisove and Kwan Hyoung Kang for useful discussions. We thank Intralase Corp. for the laser. This work was supported by NIH R21 EB006098.

Author information

Authors and Affiliations

Authors

Contributions

S.L. discovered the phenomena and the governing mechanism. S.L. conceived and designed the experiments. S.L. performed all the experiments except the I–V measurements in fused silica substrates, which were carried out by R.A. S.L. performed the numerical simulation and analysed the simulation results. S.L. developed the nano-injector and analysed the performance. S.L. and A.J.H. developed the breakdown model, discussed the results, and co-wrote the paper. A.J.H. guided the overall thrust and direction of this research.

Corresponding authors

Correspondence to Sanghyun Lee or Alan J. Hunt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1506 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., An, R. & Hunt, A. Liquid glass electrodes for nanofluidics. Nature Nanotech 5, 412–416 (2010). https://doi.org/10.1038/nnano.2010.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.81

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing