Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

Abstract

Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHC's resting membrane potential (Vm), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by triggering small-conductance Ca2+-activated K+ (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-attached spikes result from spontaneous action potentials.
Figure 2: Spontaneous action potentials in IHCs require physiological recording conditions.
Figure 3: Patterning of spontaneous spiking activity in apical and basal IHCs.
Figure 4: Modulation of action potential activity of mouse IHCs by superfusing ATP.
Figure 5: Role of endogenous ATP in spontaneous spiking activity in mouse IHCs.
Figure 6: Dual action of ATP on spontaneous spiking activity in mouse IHCs.
Figure 7: Effect of endogenous ACh on IHC spontaneous spiking activity.

Similar content being viewed by others

References

  1. Conte, I. et al. miR-204 is required for lens and retinal development via Meis2 targeting. Proc. Natl. Acad. Sci. USA 107, 15491–15496 (2010).

    Article  CAS  Google Scholar 

  2. Kuhn, S. et al. miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells. Proc. Natl. Acad. Sci. USA 108, 2355–2360 (2011).

    Article  CAS  Google Scholar 

  3. Huberman, A.D., Feller, M.B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008).

    Article  CAS  Google Scholar 

  4. Fekete, D.M. & Campero, A.M. Axon guidance in the inner ear. Int. J. Dev. Biol. 51, 549–556 (2007).

    Article  CAS  Google Scholar 

  5. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  6. Stellwagen, D. & Shatz, C.J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357–367 (2002).

    Article  CAS  Google Scholar 

  7. Blankenship, A.G. & Feller, M.B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11, 18–29 (2010).

    Article  CAS  Google Scholar 

  8. Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  9. Zhang, L.I. & Poo, M. Electrical activity and development of neural circuits. Nat. Neurosci. 4, 1207–1214 (2001).

    Article  CAS  Google Scholar 

  10. Moody, W.J. & Bosma, M.M. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol. Rev. 85, 883–941 (2005).

    Article  CAS  Google Scholar 

  11. Kros, C.J., Ruppersberg, J.P. & Rüsch, A. Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394, 281–284 (1998).

    Article  CAS  Google Scholar 

  12. Beutner, D. & Moser, T. The presynaptic function of mouse cochlear inner hair cells during development of hearing. J. Neurosci. 21, 4593–4599 (2001).

    Article  CAS  Google Scholar 

  13. Glowatzki, E. & Fuchs, P.A. Transmitter release at the hair cell ribbon synapse. Nat. Neurosci. 5, 147–154 (2002).

    Article  CAS  Google Scholar 

  14. Marcotti, W., Johnson, S.L., Rüsch, A. & Kros, C.J. Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J. Physiol. (Lond.) 552, 743–761 (2003).

    Article  CAS  Google Scholar 

  15. Brandt, N. et al. Thyroid hormone deficiency affects postnatal spiking activity and expression of Ca2+ and K+ channels in rodent inner hair cells. J. Neurosci. 27, 3174–3186 (2007).

    Article  CAS  Google Scholar 

  16. Johnson, S.L., Adelman, J.P. & Marcotti, W. Genetic deletion of SK2 channels in mouse inner hair cells prevents the developmental linearization in the Ca2+ dependence of exocytosis. J. Physiol. (Lond.) 583, 631–646 (2007).

    Article  CAS  Google Scholar 

  17. Johnson, S.L., Forge, A., Knipper, M., Münkner, S. & Marcotti, W. Tonotopic variation in the calcium dependence of neurotransmitter release and vesicle pool replenishment at mammalian auditory ribbon synapses. J. Neurosci. 28, 7670–7678 (2008).

    Article  CAS  Google Scholar 

  18. Johnson, S.L. & Marcotti, W. Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells. J. Physiol. (Lond.) 586, 1029–1042 (2008).

    Article  CAS  Google Scholar 

  19. Johnson, S.L., Franz, C., Knipper, M. & Marcotti, W. Functional maturation of the exocytotic machinery at gerbil hair cell ribbon synapses. J. Physiol. (Lond.) 587, 1715–1726 (2009).

    Article  CAS  Google Scholar 

  20. Kandler, K., Clause, A. & Noh, J. Tonotopic reorganization of developing auditory brainstem circuits. Nat. Neurosci. 12, 711–717 (2009).

    Article  CAS  Google Scholar 

  21. Marcotti, W., Johnson, S.L., Holley, M.C. & Kros, C.J. Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J. Physiol. (Lond.) 548, 383–400 (2003).

    Article  CAS  Google Scholar 

  22. Marcotti, W., Johnson, S.L. & Kros, C.J. A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J. Physiol. (Lond.) 560, 691–708 (2004).

    Article  CAS  Google Scholar 

  23. Glowatzki, E. & Fuchs, P.A. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science 288, 2366–2368 (2000).

    Article  CAS  Google Scholar 

  24. Tritsch, N.X., Yi, E., Gale, J.E., Glowatzki, E. & Bergles, D.E. The origin of spontaneous activity in the developing auditory system. Nature 450, 50–55 (2007).

    Article  CAS  Google Scholar 

  25. Tritsch, N.X. & Bergles, D.E. Developmental regulation of spontaneous activity in the Mammalian cochlea. J. Neurosci. 30, 1539–1550 (2010).

    Article  CAS  Google Scholar 

  26. Tritsch, N.X. et al. Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset. Nat. Neurosci. 13, 1050–1052 (2010).

    Article  CAS  Google Scholar 

  27. Wangemann, P. & Schacht, J. Homeostatic mechanisms in the cochlea. in The Cochlea (eds. Dallos, P., Popper, A. & Fay, R.) 130–185 (Springer, New York, 1996).

  28. Sonntag, M., Englitz, B., Kopp-Scheinpflug, C. & Rübsamen, R. Early postnatal development of spontaneous and acoustically evoked discharge activity of principal cells of the medial nucleus of the trapezoid body: an in vivo study in mice. J. Neurosci. 29, 9510–9520 (2009).

    Article  CAS  Google Scholar 

  29. Jones, T.A. & Jones, S.M. Spontaneous activity in the statoacoustic ganglion of the chicken embryo. J. Neurophysiol. 83, 1452–1468 (2000).

    Article  CAS  Google Scholar 

  30. Kros, C.J. How to build an inner hair cell: challenges for regeneration. Hear. Res. 227, 3–10 (2007).

    Article  CAS  Google Scholar 

  31. Zampini, V. et al. Elementary properties of CaV1.3 Ca2+ channels expressed in mouse cochlear inner hair cells. J. Physiol. (Lond.) 588, 187–199 (2010).

    Article  CAS  Google Scholar 

  32. North, R.A. & Surprenant, A. Pharmacology of cloned P2X receptors. Annu. Rev. Pharmacol. Toxicol. 40, 563–580 (2000).

    Article  CAS  Google Scholar 

  33. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  34. Sobkowicz, H.M. The development of innervation in the organ of Corti. in Development of Auditory and Vestibular Systems 2 (ed. Romand, R.) 59–100 (Elsevier, Amsterdam, 1992).

  35. Elgoyhen, A.B. et al. α10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl. Acad. Sci. USA 98, 3501–3506 (2001).

    Article  CAS  Google Scholar 

  36. Maison, S.F., Luebke, A.E., Liberman, M.C. & Zuo, J. Efferent protection from acoustic injury is mediated via α9 nicotinic acetylcholine receptors on outer hair cells. J. Neurosci. 22, 10838–10846 (2002).

    Article  CAS  Google Scholar 

  37. Katz, E. et al. Developmental regulation of nicotinic synapses on cochlear inner hair cells. J. Neurosci. 24, 7814–7820 (2004).

    Article  CAS  Google Scholar 

  38. Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E. & Heinemann, S. α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79, 705–715 (1994).

    Article  CAS  Google Scholar 

  39. Evans, M.G. Acetylcholine activates two currents in guinea-pig outer hair cells. J. Physiol. (Lond.) 491, 563–578 (1996).

    Article  CAS  Google Scholar 

  40. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).

    Article  CAS  Google Scholar 

  41. Jones, T.A., Leake, P.A., Snyder, R.L., Stakhovskaya, O. & Bonham, B. Spontaneous discharge patterns in cochlear spiral ganglion cells before the onset of hearing in cats. J. Neurophysiol. 98, 1898–1908 (2007).

    Article  Google Scholar 

  42. Lippe, W.R. Relationship between frequency of spontaneous bursting and tonotopic position in the developing avian auditory system. Brain Res. 703, 205–213 (1995).

    Article  CAS  Google Scholar 

  43. Pujol, R., Lavigne-Rebillard, M. & Lenoir, M. Development of sensory and neural structures in the mammalian cochlea. in Development of the Auditory System (eds. Rubel, E.W. et al.) 146–192 (Springer, New York, 1998).

  44. Goutman, J.D., Fuchs, P.A. & Glowatzki, E. Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat. J. Physiol. (Lond.) 566, 49–59 (2005).

    Article  CAS  Google Scholar 

  45. Walsh, E.J. & Romand, R. Functional development of the cochlea and the cochlear nerve. in Development of Auditory and Vestibular Systems 2 (ed. Romand, R.) 161–210 (Elsevier, Amsterdam, 1992).

  46. Köppl, C. Spontaneous generation in early sensory development. Focus on “spontaneous discharge patterns in cochlear spiral ganglion cells before the onset of hearing in cats.” J. Neurophysiol. 98, 1843–1844 (2007).

    Article  Google Scholar 

  47. Housley, G.D., Marcotti, W., Navaratnam, D. & Yamoah, E.N. Hair cells—beyond the transducer. J. Membr. Biol. 209, 89–118 (2006).

    Article  CAS  Google Scholar 

  48. Huang, L.C., Ryan, A.F., Cockayne, D.A. & Housley, G.D. Developmentally regulated expression of the P2X3 receptor in the mouse cochlea. Histochem. Cell Biol. 125, 681–692 (2006).

    Article  CAS  Google Scholar 

  49. Sugasawa, M., Erostegui, C., Blanchet, C. & Dulon, D. ATP activates non-selective cation channels and calcium release in inner hair cells of the guinea-pig cochlea. J. Physiol. (Lond.) 491, 707–718 (1996).

    Article  CAS  Google Scholar 

  50. Heidrych, P. et al. Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell. Hum. Mol. Genet. 18, 2779–2790 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by project grants from the Wellcome Trust (088719), the Royal National Institute for Deaf People (G41) and Deafness Research UK to W.M. and a Medical Research Council Programme Grant (G0100798) to C.J.K. SK2-knockout mice were obtained from J.P. Adelman. W.M. is a Royal Society University Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

S.L.J. and W.M. performed most of the experimental work. All authors helped with the collection and analysis of the electrophysiological data. C.F. and M.K. collected immunolabeling data. C.J.K. had the initial idea of using cell-attached recording of IHC action potentials. W.M., S.L.J. and C.J.K. designed the experiments and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Corné J Kros or Walter Marcotti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, S., Eckrich, T., Kuhn, S. et al. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells. Nat Neurosci 14, 711–717 (2011). https://doi.org/10.1038/nn.2803

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing