Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum

Abstract

Motile archaea swim using a rotary filament, the archaellum, a surface appendage that resembles bacterial flagella structurally, but is homologous to bacterial type IV pili. Little is known about the mechanism by which archaella produce motility. To gain insights into this mechanism, we characterized archaellar function in the model organism Halobacterium salinarum. Three-dimensional tracking of quantum dots enabled visualization of the left-handed corkscrewing of archaea in detail. An advanced analysis method combined with total internal reflection fluorescence microscopy, termed cross-kymography, was developed and revealed a right-handed helical structure of archaella with a rotation speed of 23 ± 5 Hz. Using these structural and kinetic parameters, we computationally reproduced the swimming and precession motion with a hydrodynamic model and estimated the archaellar motor torque to be 50 pN nm. Finally, in a tethered-cell assay, we observed intermittent pauses during rotation with 36° or 60° intervals, which we speculate may be a unitary step consuming a single adenosine triphosphate molecule, which supplies chemical energy of 80 pN nm when hydrolysed. From an estimate of the energy input as ten or six adenosine triphosphates per revolution, the efficiency of the motor is calculated to be 6–10%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Swimming of Hbt. salinarum.
Figure 2: Visualization of rotation of the cell body of swimming Hbt. salinarum.
Figure 3: Visualization of archaella rotation of swimming archaea.
Figure 4: Simultaneous determination of rotation direction and helicity of archaella with cross-kymography under TIRFM.
Figure 5: Numerical calculation by a hydrodynamic model based on SBT.
Figure 6: Steps of single cells of Hbt. salinarum detected by tethered-cell assay.

Similar content being viewed by others

References

  1. Jarrell, K. F. & McBride, M. J. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466–476 (2008).

    Article  CAS  Google Scholar 

  2. Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Sowa, Y. & Berry, R. M. Bacterial flagellar motor. Q. Rev. Biophys. 41, 103–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Skerker, J. M. & Berg, H. C. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA 98, 6901–6904 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Ghosh, A., Hartung, S., van der Does, C., Tainer, J. A. & Albers, S. V. Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. Biochem. J. 437, 43–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jarrell, K. F. & Albers, S. V. The archaellum: an old motility structure with a new name. Trends Microbiol. 20, 307–312 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Szabo, Z. et al. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J. Bacteriol. 189, 772–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Patenge, N., Berendes, A., Engelhardt, H., Schuster, S. C. & Oesterhelt, D. The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum. Mol. Microbiol. 41, 653–663 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Thomas, N. A., Mueller, S., Klein, A. & Jarrell, K. F. Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly. Mol. Microbiol. 46, 879–887 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Reindl, S. et al. Insights into FlaI functions in archaeal motor assembly and motility from structures, conformations, and genetics. Mol. Cell 49, 1069–1082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alam, M. & Oesterhelt, D. Morphology, function and isolation of halobacterial flagella. J. Mol. Biol. 176, 459–475 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Marwan, W., Alam, M. & Oesterhelt, D. Rotation and switching of the flagellar motor assembly in Halobacterium halobium. J. Bacteriol. 173, 1971–1977 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shahapure, R., Driessen, R. P., Haurat, M. F., Albers, S. V. & Dame, R. T. The archaellum: a rotating type IV pilus. Mol. Microbiol. 91, 716–723 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Yajima, J., Mizutani, K. & Nishizaka, T. A torque component present in mitotic kinesin Eg5 revealed by three-dimensional tracking. Nat. Struct. Mol. Biol. 15, 1119–1121 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Yamaguchi, S. et al. Torque generation by axonemal outer-arm dynein. Biophys. J. 108, 872–879 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Katoh, T. A., Fujimura, S. & Nishizaka, T. in Handbook of Photonics for Biomedical Engineering (eds Ho, A. H.-P., Kim, D. & Somekh, M. G.) (Springer, in the press).

  18. Tsuji, T. et al. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells. Biochem. Biophys. Res. Commun. 405, 638–643 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Kinosita, Y. et al. Unitary step of gliding machinery in Mycoplasma mobile. Proc. Natl Acad. Sci. USA 111, 8601–8606 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Masaike, T., Koyama-Horibe, F., Oiwa, K., Yoshida, M. & Nishizaka, T. Cooperative three-step motions in catalytic subunits of F1-ATPase correlate with 80° and 40° substep rotations. Nat. Struct. Mol. Biol. 15, 1326–1333 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Nishizaka, T. et al. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol. 11, 142–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Cox, R. G. The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791–810 (1970).

    Article  Google Scholar 

  23. Rodenborn, B., Chen, C. H., Swinney, H. L., Liu, B. & Zhang, H. P. Propulsion of microorganisms by a helical flagellum. Proc. Natl Acad. Sci. USA 110, E338–E347 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Oesterhelt, D. & Krippahl, G. Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. Ann. Microbiol. 134B, 137–150 (1983).

    CAS  Google Scholar 

  25. Liu, B. et al. Helical motion of the cell body enhances Caulobacter crescentus motility. Proc. Natl Acad. Sci. USA 111, 11252 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Watanabe, N. & Mitchison, T. J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295, 1083–1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Darnton, N. C., Turner, L., Rojevsky, S. & Berg, H. C. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189, 1756–1764 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Magariyama, Y. et al. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys. J. 69, 2154–2162 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kireev, I. I., Novikova, T. M., Sheval, E. V. & Metlina, A. L. Structure of the intracellular part of the motility apparatus of halobacteria. Mikrobiologiia 75, 364–370 (2006).

    CAS  PubMed  Google Scholar 

  32. Tokunaga, M., Kitamura, K., Saito, K., Iwane, A. H. & Yanagida, T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235, 47–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Berg, H. C. & Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973).

    Article  CAS  PubMed  Google Scholar 

  34. Sowa, Y. et al. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437, 916–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Yasuda, R., Noji, H., Kinosita, K. Jr & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps. Cell 93, 1117–1124 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Armitage, J. P. & Schmitt, R. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti—variations on a theme? Microbiology 143, 3671–3682 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Son, K., Guasto, J. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9, 494–498 (2013).

    Article  CAS  Google Scholar 

  38. Wang, F., Yuan, J. & Berg, H. C. Switching dynamics of the bacterial flagellar motor near zero load. Proc. Natl Acad. Sci. USA 111, 15752–15755 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Shaevitz, J. W., Lee, J. Y. & Fletcher, D. A. Spiroplasma swim by a processive change in body helicity. Cell 122, 941–945 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).

    Article  CAS  Google Scholar 

  41. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura, S., Kami-ike, N., Yokota, J. P., Minamino, T. & Namba, K. Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 107, 17616–17620 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhury, P. et al. The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor. Mol. Microbiol. 99, 674–685 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tripepi, M., Imam, S. & Pohlschroder, M. Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J. Bacteriol. 192, 3093–3102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kudo, S., Magariyama, Y. & Aizawa, S. Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature 346, 677–680 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S.-V. Albers, M. Beeby, R. Kamiya, H. Noji and I. Sase for discussions that were critical in preparing the manuscript, and T. Minamino and Y.V. Morimoto for supplying Salmonella. This study was supported in part by the Funding Program for Next-Generation World-Leading Researchers Grant LR033 (to T.N.) from the Japan Society for the Promotion of Science (JSPS), by a Grant-in-Aid for Scientific Research on Innovative Areas (‘Fluctuation & Structure’ of JSPS KAKENHI grant nos. JP26103502 and JP16H00792 to N.U. and nos. JP26103527 and JP16H00808 to T.N.; ‘Cilia & Centrosomes’ of grant no. JP87003306 to T.N.; ‘Motility Machinery’ of grant no. JP15H01329 to D.N and no. JP24117002 to T.N.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by JSPS KAKENHI (grant no. JP16H06230 to D.N. and no. JP15H04364 to T.N.). Y.K is a recipient of a JSPS Fellowship for Japan Junior Scientists (no. JP15J12274).

Author information

Authors and Affiliations

Authors

Contributions

Y.K., N.U., D.N. and T.N. designed the research. Y.K. performed experimental work. N.U. developed a framework for computational calculations. Y.K. and T.N. constructed the optical set-up and microscope. Y.K. and T.N. performed data analyses. Y.K., N.U. and T.N. wrote the paper.

Corresponding authors

Correspondence to Nariya Uchida or Takayuki Nishizaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Methods, Supplementary Results, Supplementary Figures 1-6, Supplementary Table 1, Legends for Supplementary Videos 1-11, Supplementary References (PDF 821 kb)

Supplementary Video 1

Swimming of Halobacterium salinarum observed under phase-contrast microscopy. (AVI 17759 kb)

Supplementary Video 2

Fluorescent image of QDs attached to the cell body observed under 3D tracking microscopy, termed as ‘three-dimensional prismatic optical tracking’ (AVI 591 kb)

Supplementary Video 3

Rotation of cell body and archaella simultaneously observed under fluorescent microscopy. (AVI 1300 kb)

Supplementary Video 4

Swimming of fluorescent-labelled cells observed under fluorescent microscopy. (AVI 7504 kb)

Supplementary Video 5

Hbt. salinarum with several flagellar filaments, each one rotating independently. (AVI 3300 kb)

Supplementary Video 6

Archaella rotation observed under TIRFM. (AVI 4389 kb)

Supplementary Video 7

Rotation of bacterial flagellum under TIRFM. Scale bar represents 2 μm. (AVI 2093 kb)

Supplementary Video 8

The reconstructed swimming motion of a single archaeon with observed parameters, based on slender-body theory. (MP4 350 kb)

Supplementary Video 9

Dark-field image of Hbt. salinarum tethered to the glass. (AVI 579 kb)

Supplementary Video 10

Dark-field image of Hbt. salinarum tethered to the glass. (AVI 391 kb)

Supplementary Video 11

Dark-field image of Hbt. salinarum tethered to the glass (AVI 4060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinosita, Y., Uchida, N., Nakane, D. et al. Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum. Nat Microbiol 1, 16148 (2016). https://doi.org/10.1038/nmicrobiol.2016.148

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.148

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology