Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

PPARβ/δ governs Wnt signaling and bone turnover

Abstract

Peroxisome proliferator-activated receptors (PPARs) act as metabolic sensors and central regulators of fat and glucose homeostasis1. Furthermore, PPARγ has been implicated as major catabolic regulator of bone mass in mice and humans2,3,4,5. However, a potential involvement of other PPAR subtypes in the regulation of bone homeostasis has remained elusive. Here we report a previously unrecognized role of PPARβ/δ as a key regulator of bone turnover and the crosstalk between osteoblasts and osteoclasts. In contrast to activation of PPARγ, activation of PPARβ/δ amplified Wnt-dependent and β-catenin–dependent signaling and gene expression in osteoblasts, resulting in increased expression of osteoprotegerin (OPG) and attenuation of osteoblast-mediated osteoclastogenesis. Accordingly, PPARβ/δ-deficient mice had lower Wnt signaling activity, lower serum concentrations of OPG, higher numbers of osteoclasts and osteopenia. Pharmacological activation of PPARβ/δ in a mouse model of postmenopausal osteoporosis led to normalization of the altered ratio of tumor necrosis factor superfamily, member 11 (RANKL, also called TNFSF11) to OPG, a rebalancing of bone turnover and the restoration of normal bone density. Our findings identify PPARβ/δ as a promising target for an alternative approach in the treatment of osteoporosis and related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PPARβ/δ promotes canonical Wnt–β-catenin signaling in osteoblasts.
Figure 2: Activation of PPARβ/δ promotes the differentiation of osteoblasts and blocks osteoclastogenesis in an osteoblast-dependent manner.
Figure 3: PPARβ/δ deficiency results in osteopenia.
Figure 4: Pharmacologic activation of PPARβ/δ protects from OVX-induced bone loss.

Similar content being viewed by others

References

  1. Evans, R.M., Barish, G.D. & Wang, Y.X. PPARs and the complex journey to obesity. Nat. Med. 10, 355–361 (2004).

    Article  CAS  Google Scholar 

  2. Kawai, M. & Rosen, C.J. PPARγ: a circadian transcription factor in adipogenesis and osteogenesis. Nat. Rev. Endocrinol. 6, 629–636 (2010).

    Article  CAS  Google Scholar 

  3. Giaginis, C., Tsantili-Kakoulidou, A. & Theocharis, S. Peroxisome proliferator-activated receptors (PPARs) in the control of bone metabolism. Fundam. Clin. Pharmacol. 21, 231–244 (2007).

    Article  CAS  Google Scholar 

  4. Viccica, G., Francucci, C.M. & Marcocci, C. The role of PPARγ for the osteoblastic differentiation. J. Endocrinol. Invest. 33, 9–12 (2010).

    CAS  PubMed  Google Scholar 

  5. Grey, A. Skeletal consequences of thiazolidinedione therapy. Osteoporos. Int. 19, 129–137 (2008).

    Article  CAS  Google Scholar 

  6. Akune, T. et al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Invest. 113, 846–855 (2004).

    Article  CAS  Google Scholar 

  7. Wan, Y., Chong, L.W. & Evans, R.M. PPAR-γ regulates osteoclastogenesis in mice. Nat. Med. 13, 1496–1503 (2007).

    Article  CAS  Google Scholar 

  8. Wei, W. et al. PGC1β mediates PPARγ activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab. 11, 503–516 (2010).

    Article  CAS  Google Scholar 

  9. Takada, I., Kouzmenko, A.P. & Kato, S. Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nat. Rev. Rheumatol. 5, 442–447 (2009).

    Article  CAS  Google Scholar 

  10. Mulholland, D.J., Dedhar, S., Coetzee, G.A. & Nelson, C.C. Interaction of nuclear receptors with the Wnt/β-catenin/Tcf signaling axis: Wnt you like to know? Endocr. Rev. 26, 898–915 (2005).

    Article  CAS  Google Scholar 

  11. Takada, I., Suzawa, M., Matsumoto, K. & Kato, S. Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts. Ann. NY Acad. Sci. 1116, 182–195 (2007).

    Article  CAS  Google Scholar 

  12. Okamura, M. et al. COUP-TFII acts downstream of Wnt/β-catenin signal to silence PPARγ gene expression and repress adipogenesis. Proc. Natl. Acad. Sci. USA 106, 5819–5824 (2009).

    Article  CAS  Google Scholar 

  13. Kubota, T., Michigami, T. & Ozono, K. Wnt signaling in bone metabolism. J. Bone Miner. Metab. 27, 265–271 (2009).

    Article  CAS  Google Scholar 

  14. Glass, D.A. II et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764 (2005).

    Article  CAS  Google Scholar 

  15. Holmen, S.L. et al. Essential role of β-catenin in postnatal bone acquisition. J. Biol. Chem. 280, 21162–21168 (2005).

    Article  CAS  Google Scholar 

  16. Kramer, I. et al. Osteocyte Wnt/β-catenin signaling is required for normal bone homeostasis. Mol. Cell Biol. 30, 3071–3085 (2010).

    Article  CAS  Google Scholar 

  17. Wang, D., Mann, J.R. & DuBois, R.N. WNT and cyclooxygenase-2 cross-talk accelerates adenoma growth. Cell Cycle 3, 1512–1515 (2004).

    Article  CAS  Google Scholar 

  18. Wang, D. et al. Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor δ. Cancer Cell 6, 285–295 (2004).

    Article  CAS  Google Scholar 

  19. Nadra, K. et al. Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor β/δ. Mol. Cell Biol. 26, 3266–3281 (2006).

    Article  CAS  Google Scholar 

  20. Hayashi, S., Lewis, P., Pevny, L. & McMahon, A.P. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech. Dev. 119, S97–S101 (2002).

    Article  Google Scholar 

  21. Cui, Y. et al. Lrp5 functions in bone to regulate bone mass. Nat. Med. 17, 684–691 (2011).

    Article  CAS  Google Scholar 

  22. Cho, E.S. et al. The effects of rosiglitazone on osteoblastic differentiation, osteoclast formation and bone resorption. Mol. Cells 33, 173–181 (2012).

    Article  CAS  Google Scholar 

  23. Chan, B.Y. et al. PPAR agonists modulate human osteoclast formation and activity in vitro. Bone 40, 149–159 (2007).

    Article  CAS  Google Scholar 

  24. Barish, G.D., Narkar, V.A. & Evans, R.M. PPARδ: a dagger in the heart of the metabolic syndrome. J. Clin. Invest. 116, 590–597 (2006).

    Article  CAS  Google Scholar 

  25. Narkar, V.A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    Article  CAS  Google Scholar 

  26. Lee, N.K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007).

    Article  CAS  Google Scholar 

  27. Still, K., Grabowski, P., Mackie, I., Perry, M. & Bishop, N. The peroxisome proliferator activator receptor α/δ agonists linoleic acid and bezafibrate upregulate osteoblast differentiation and induce periosteal bone formation in vivo. Calcif. Tissue Int. 83, 285–292 (2008).

    Article  CAS  Google Scholar 

  28. Olson, E.J., Pearce, G.L., Jones, N.P. & Sprecher, D.L. Lipid effects of peroxisome proliferator-activated receptor-δ agonist GW501516 in subjects with low high-density lipoprotein cholesterol: characteristics of metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 32, 2289–2294 (2012).

    Article  CAS  Google Scholar 

  29. Hayashi, S., Lewis, P., Pevny, L. & McMahon, A.P. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Gene expression patterns. Gene Expr. Patterns 2, 93–97 (2002).

    Article  CAS  Google Scholar 

  30. Kleyer, A. et al. LXRs orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss. J. Bone Miner. Res. 27, 2442–2451 (2012).

    Article  CAS  Google Scholar 

  31. Krönke, G. et al. R-spondin 1 protects against inflammatory bone damage during murine arthritis by modulating the Wnt pathway. Arthritis Rheum. 62, 2303–2312 (2010).

    Article  Google Scholar 

  32. Bouffi, C., Bony, C., Courties, G., Jorgensen, C. & Noël, D. IL-6–dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS ONE 5, e14247 (2010).

    Article  Google Scholar 

  33. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  Google Scholar 

  34. Krönke, G. et al. Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein. J. Biol. Chem. 278, 51006–51014 (2003).

    Article  Google Scholar 

  35. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Steffen, U. Hillienhoff and I. Schmidt for technical assistance and J. Wittmann for his help during the analysis of the Lrp5 promoter. Wnt3a-expressing L cells were kindly provided by K. Tanneberger (Department of Experimental Medicine II, University of Erlangen). This study was supported by the Deutsche Forschungsgemeinschaft (KR3523, FG 661, SFB643 and SPP1468-IMMUNOBONE), the Bundesministerium für Bildung und Forschung (BMBF; project ANCYLOSS); the ELAN Program of the University of Erlangen-Nuremberg; the MASTERSWITCH and IMI projects of the European Union; the Interdisciplinary Centre for Clinical Research (IZKF) Erlangen; and the Bayrische Forschungsstftung.

Author information

Authors and Affiliations

Authors

Contributions

C. Scholtysek planned and performed in vitro and in vivo experiments, conducted data analyses and wrote the manuscript. J.K., H.F., S.U. and M.M.Z. conducted data analyses and performed in vivo and in vitro experiments. N.I. and F.D. performed MSC differentiation and characterization and conducted the related experiments and data analyses. C. Stoll cloned and characterized the Lrp5 promoter. M.S., L.D., C.B. and A.K. performed histological data acquisition and data analyses. A.H., K.E. and J.P.T. established, performed and interpreted the microcomputer tomography–based bone analyses. B.D. generated and provided PpardSox2-cKO mice and contributed to the study design. J.-P.D. and G.S. provided input and wrote the manuscript. G.K. supervised the project, planned and conducted experiments and data analysis and wrote the manuscript.

Corresponding author

Correspondence to Gerhard Krönke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholtysek, C., Katzenbeisser, J., Fu, H. et al. PPARβ/δ governs Wnt signaling and bone turnover. Nat Med 19, 608–613 (2013). https://doi.org/10.1038/nm.3146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3146

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research